MCDONALDS POND RESTORATION SITE 2010 Annual Monitoring Report (Year 5)

Richmond County, North Carolina EEP Project No. D04020-2 Design Firm: International Paper

Prepared for: NCDENR – ECOSYSTEM ENHANCEMENT PROGRAM 1652 Mail Service Center Raleigh, North Carolina 27699-1619

This Page Left Blank Intentionally

MCDONALDS POND RESTORATION SITE 2010 Annual Monitoring Report (Year 5)

RICHMOND COUNTY, NORTH CAROLINA

PREPARED BY:

RESOURCE MANAGEMENT SERVICE, LLC PROJECT MANAGER: TONY DOSTER 2704-C Exchange Drive Wilmington, NC 28405

AND

PBS&J, an Atkins company PROJECT MANAGER: JENS GERATZ 1616 East Millbrook Road, Suite 310 Raleigh, NC 27609

January 2011

This Page Left Blank Intentionally

EXECUTIVE SUMMARY

Introduction

In response to a Request for Proposal (RFP, No. 16-D04016) issued in December of 2003, International Paper Company (IP) proposed the establishment of the McDonalds Pond Restoration Site (hereafter referred to as the "Site") located in Richmond County, approximately two (2) miles northeast of the town of Hamlet and three (3) miles east of the town of Rockingham. In order to provide stream channel restoration and riverine wetland restoration, IP has removed the McDonalds Pond Dam (Dam) located on Falling Creek. The Site comprises approximately 128 acres, and includes the 17.7 acre McDonalds Pond (a.k.a Shepards Lake), portions of Falling Creek, numerous headwater tributaries and over 80 acres of forested riparian wetlands, seepage wetlands, and marsh wetlands.

The Dam was removed in a manner to minimize potential impacts to water resources. Gradual dewatering and phased dam removal were undertaken to avoid introducing sediments and pollutants into the receiving Falling Creek reaches downstream. Heavy equipment operated from or within the footprint of the former Dam during dam removal operations, thereby minimizing the impact to the adjacent intact forest and wetland soil. Dam removal began with the dewatering (lowering) of the pond in the fall of 2005, followed by the clearing of trees and small bushes from the former earthen dam in February 2006. Excavation activities continued for approximately two weeks until dam removal was complete in mid-March 2006.

PBS&J initiated beaver management and minor grading activities on the former Dam location during Year 4 monitoring. Beaver management was performed by the USDA wildlife service, and grading was then performed in order to remove the existing beaver dam and further lower the elevation of the former Dam footprint. Once grading activities were complete, an approximate 2-acre area was replanted.

Monitoring Plan

Monitoring activities began in March 2006 (Year 1), and were performed for five years. Project success is based on a comparison of post removal monitoring data collected from 2006-2010 to reference sites as well as biological baseline values collected in September 2004. Primary success criteria of the project include: 1) the successful classification of restored/enhanced stream reaches as functioning systems, 2) channel stability indicative of a stable stream system, 3) development of characteristic lotic aquatic communities, 4) establishment of wetland hydrology (as defined in the U.S. Army Corps of Engineers [USACE] Wetlands Delineation Manual) within the former pond footprint, and 5) vegetative success of 320 stems/acre after the third year of monitoring and 260 stems/acre after the fifth and final year of monitoring. The following monitoring report describes the results of the final year of monitoring activities completed during (2010) Year 5 monitoring.

Year 5 Monitoring Results (2010)

Stream Assessment

Following five years of passive stream restoration on the Site, Falling Creek now contains braided, anastomosed, bifurcated, and single-threaded channels characteristic of the area. Restored and enhanced

stream segments across the Site have stream pattern, profile, and dimension similar to that of reference reaches. In addition, stream banks have stabilized with native planted and volunteer vegetation.

Aquatic community assemblages within the former pond have maintained characteristics of a natural lotic system. Fifty percent (50%) of the macroinvertebrate samples taken in October 2010 (Year 5) from restored segments of Falling Creek (within the former pond) consisted of macroinvertebrate genera predominantly found in lotic systems. Genera predominantly found in lentic systems represented only five percent (5%) of species collected within the former pond from the Year 5 samples. A comparison of aquatic community assemblages from 2006-2010 indicates the successful development of a characteristic lotic aquatic community.

North Carolina Division of Water Quality (NCDWQ) Habitat Assessment Forms (HAFs) were completed at multiple locations along the restored and enhanced segments of Falling Creek. The HAF scores quantitatively increased in each of the five monitoring years and indicate that the restored and enhanced stream segments contain in-stream habitat characteristic of reference reaches.

Wetland Vegetation Assessment

Vegetation monitoring was performed based on the Carolina Vegetation Survey (CVS) Levels 1 and 2 at eight (8) 10 x 10 meter plots. Based on Year 5 monitoring, the average count of surviving planted species is 491 stems per acre, which exceeds the established success criteria of 260 stems/acre. If volunteer species are included, the total survival increases to 4,467 stems per acre. Vegetation success criteria were met in each of the five monitoring years indicating the establishment of an appropriate vegetative community.

Wetland Hydrology Assessment

All four groundwater gauges (Gauges 1-4) located on-Site have registered water levels within the upper 12 inches of the soil surface for at least 28 consecutive days (Richmond County, NRCS) or 12.5 percent (12.5%) of the growing season. With the exception of 2009 (gauge 3 malfunction), all groundwater gauges on the Site achieved success criteria within each of the five monitoring years indicating the establishment of wetland hydrology in the former pond footprint.

Summary

Following the fifth year of monitoring, restored streams within the former pond have developed stable, lotic conditions typical of reference systems. Pattern, profile, and dimension data obtained from channel surveys indicate that stream geomorphology continues to shift toward that of reference reaches. Groundwater gauge data within the former pond indicates restored wetland hydrology and closely resembles that of the upstream reference gauge. Vegetation surveys support the establishment of a Streamhead Pocosin/Atlantic White Cedar forest community with thriving planted and volunteer species. Stream, wetland vegetation, and wetland hydrology success criteria were met in all monitoring years (2006-2010). All primary project goals and objectives have been met or exceeded for this project.

TABLE OF CONTENTS

RY	
CKGROUND	1
on and Setting	1
tion Structure and Objectives	1
History and Background	
NDITION AND MONITORING RESULTS	6
Assessment	6
Stream Channel Morphology	6
Stream Problem Areas	
Aquatic Communities	11
Habitat Assessment	13
Vegetation Assessment	15
Groundwater Hydrology	17
Wetland Criteria Attainment	18
	19
	CKGROUND on and Setting tion Structure and Objectives. Objectives History and Background NDITION AND MONITORING RESULTS Assessment Stream Channel Morphology Stream Problem Areas Aquatic Communities Habitat Assessment d Assessment Vegetation Assessment Groundwater Hydrology Wetland Criteria Attainment

APPENDICIES

Appendix A: Figures

- 1. Site Location
- 2. Stream Monitoring Plan View
- 3. Habitat Composition
- 4. Vegetation Monitoring Plots
- 5. Monitoring Gauges

Appendix B: Stream Geomorphology Data

Appendix C: Aquatic Community Data

Appendix D: NCDWQ Habitat Assessment Field Data Sheet: Coastal Plain

Appendix E: Vegetation Monitoring Plot Photos

Appendix F: Groundwater Gauge Hydrograph

LIST OF TABLES

Table 1.	Summary of Stream and Wetland Mitigation Units	2
Table 2.	Project Activity and Reporting History	3
Table 3.	Project Contacts	4
Table 4.	Project Background	5
Table 5.	Baseline Morphology and Hydrologic Summary	7
Table 6.	Morphology and Hydraulic Monitoring Summary	8
Table 6a.	Morphology and Hydraulic Monitoring Summary (Cont.)	
Table 6b.	Morphology and Hydraulic Monitoring Summary (Cont.)	10
Table 7.	Benthic Macroinvertebrate Metric Summary	13
Table 8.	NCDWQ Habitat Assessment Form Scores	13
Table 9.	Stem Counts for Planted Species Arranged by Plot	15
Table 9a.	Stem Counts for Planted Species at New Plots	16
Table 9b.	Stem Counts for Volunteer Species Arranged by Plot	16
Table 10.	Wetland Criteria Attainment	18

1.0 PROJECT BACKGROUND

1.1 Location and Setting

The North Carolina Ecosystem Enhancement Program (EEP) is currently developing stream and wetland restoration strategies for the Yadkin-Pee Dee River Basin, Cataloging Unit 03040201. As a part of this effort, International Paper (IP) was selected to complete the McDonalds Pond Restoration Project located in Richmond County. The McDonalds Pond Restoration Site ('hereafter referred to as the "Site") is located approximately two (2) miles northeast of the town of Hamlet and three (3) miles east of the town of Rockingham between NC Route 1 and NC Route 177 (Figure 1, Appendix A).

1.2 Restoration Structure and Objectives

Falling Creek, the major drainage feature on-Site, was previously impounded by the McDonalds Pond Dam (Dam), constructed over 70 years ago. Approximately 3,700 linear feet of Falling Creek and tributaries were impacted by the construction of the Dam including streams contained within the pond footprint, as well as stream sections located both up and downstream of the pond. In addition, approximately 17.7 acres of riverine wetland were inundated with the construction of the Dam. Approximately 4.2 acres of the floodplain immediately upstream of the pond were impacted by the "backwater effect" (the backing-up of water), creating marsh wetlands with saturated conditions unsuitable for historic wetland communities. An eroded pond outfall channel located at the northern extent of the Dam drained adjacent wetlands and redirected historic flows away from the Falling Creek floodplain.

Stream restoration efforts were achieved through the removal of the Dam resulting in the restoration of 2,969 linear feet of stream. The former Dam was excavated to the approximate level of the pre-existing valley contours, allowing the stream unrestricted flow through the Site. Stream restoration efforts were designed to utilize passive stream channel restoration processes, allowing the channel to reestablish naturally following the removal of the Dam. Stream enhancement (Level I) was achieved through the removal of the Dam and the filling of the northern outfall channel, which returned the historic hydrologic characteristics (stream volume and velocity) to 770 feet of impacted stream channel downstream of the former Dam. Riverine wetland restoration was accomplished within the former 17.7 acre pond footprint through the excavation of the Dam and the establishment of native Streamhead Pocosin and Atlantic White Cedar forest communities. Additionally, the Site includes the preservation of 5,800 linear feet of stream, 77.8 acres of wetland, and 25.6 acres of upland/wetland ecotone buffer.

1.3 Project Objectives

The primary project goals include 1) the restoration of a stable, meandering stream channel through the areas impacted by the Dam, 2) the restoration of historic lotic aquatic communities that represent the Site's natural range in variation, 3) the restoration of historic wetland conditions within the pond footprint, and 4) the restoration of natural wetland plant communities within their historic locations.

Additional potential benefits of the project include the restoration of wildlife functions associated with a riparian corridor and stable stream and the enhancement of water quality function in the on-Site, upstream, and downstream segments of Falling Creek and tributaries.

The specific goals of this project are to:

- Restore approximately 2,969 linear feet of historic stream course, flow volumes, and patterns through the marsh wetlands, McDonalds Pond footprint, and immediately downstream of the existing dam.
- Enhance an additional approximate 770 linear feet of Falling Creek downstream of the restored stream channel extending into the gas line easement (Figure 2, Appendix A)
- Protect the headwaters of Falling Creek that are located within the Site through preservation of approximately 5,800 linear feet of Falling Creek and associated tributaries.
- Restore approximately 17.7 acres of forested riverine wetlands within the McDonalds Pond footprint.
- Enhance 4.2 acres of forested riverine wetlands within the marsh wetlands located at the head of McDonalds Pond.
- Preserve 77.8 acres of forested riverine wetlands adjacent to Falling Creek and associated tributaries.
- Restore and enhance habitat for vegetation and wildlife species, characteristic of Streamhead Pocosin and Atlantic White Cedar Forest (Schafale and Weakley 1990).
- Enhance the function and value of the Falling Creek wetland community through the preservation of 25.6 acres of buffer along the Falling Creek stream/wetland complex.

Table 1. Sun	nmary of St	ream and	Wetland Mitig	gation Units					
Restoration Activities	Linear feet	Acres	Mitigation Ratios	Percentage of Mitigation Units	Mitigation Units				
Stream Restoration	1,784	N/A	1:1		1,784				
Stream Restoration (undefined channel)	1,185	N/A	1:1	75	1,185				
Stream Enhancement (Level I)	770	N/A	1:1.5		513				
Stream Preservation	5,800	N/A	1:5	25	1,160				
	Total Stre	eam Mitiga	tion Units (SN	MUs) Provided	4,642				
		,	Total SMUs U	nder Contract	4,364				
Wetlands Restoration	N/A	17.7	1:1	75	17.7				
Wetland Enhancement	N/A	4.2	1:2	25	2.1				
Wetlands Preservation	N/A	19	1:5	25	3.8				
Total Wetland Mitigation Units (WMUs) Provided									
		T	otal WMUs U	nder Contract	23.4				

1.4 Project History and Background

Table 2. Project Activity and Reporting History												
Activity Report	Scheduled Completion	Data Collection Complete	Actual Completion or Delivery									
Restoration Plan	*NA	July 2005	August 2005									
Final Design (90%)	*NA	July 2005	August 2005									
Construction	*NA	N/A	March 2006									
Temporary S&E mix applied to entire project area	*NA	N/A	March 2006									
Bare Root Seedling Installation	*NA	N/A	March 2006									
Mitigation Plan	*NA	June 2006	July 2006									
Final Report	*NA	Oct 2006	Oct 2006									
Year 1 Vegetation Monitoring	Dec 2006	Oct 2006	Dec 2006									
Year 1 Stream Monitoring	Dec 2006	Oct 2006	Dec 2006									
Year 2 Vegetation Monitoring	Dec 2007	Oct 2007	February 2008									
Year 2 Stream Monitoring	Dec 2007	Oct 2007	February 2008									
Year 3 Vegetation Monitoring	Dec 2008	Oct 2008	Dec 2008									
Year 3 Stream Monitoring	Dec 2008	Oct 2008	Dec 2008									
Year 4 Vegetation Monitoring	Dec 2009	Oct 2009	Feb 2010									
Year 4 Stream Monitoring	Dec 2009	Oct 2009	Feb 2010									
Remedial Earthwork and Supplemental Planting	Sep 2009	Sep 2009	Sep 2009									
Year 5 Vegetation Monitoring	Dec 2010	Sep 2010	Dec 2010									
Year 5 Stream Monitoring	Dec 2010	Sep 2010	Dec 2010									

^{*}NA – Scheduled completion dates unknown due to unanticipated project delays.

Table 3. Pr	oject Contacts
Designer	6400 Poplar Avenue
International Paper	Memphis, TN 38197
	(901) 419-1854
Construction Contractor	28723 Marston Road
Environmental Repair, Inc.	Marston, NC 28363
	(910) 280-6043
Planting Contractor	
Garcia Forest Service, Inc.	PO Box 789
	Rockingham, NC 28379
	(910) 997-5011
Resource Management Service, LLC	2704-C Exchange Drive
(Supplemental Planting)	Wilmington, NC 28405
(Supplemental Flanting)	910-790-1074
Seeding Contactor	
Environmental Repair, Inc.	28723 Marston Road
-	Marston, NC 28363
	(910) 280-6043
Nursery Stock Suppliers	
International Paper	5594 Highway 38 South
	Blenheim, SC 29516
	(843) 528-3203
North Carolina Division of Forest Resources	726 Claridge Nursery Road
TYOTH Caronia Division of Forest Resources	Goldsboro, NC 27530
	(919) 731-7988
	(919) 181 1966
ArborGen	P.O. Box 840001
	Summerville, SC 29484
	(843) 851-4129
Monitoring Performers	
PBS&J an Atkins company	1616 East Millbrook Road, Suite 310
	Raleigh, NC 27609
	(919) 876-6888
Stream and Wetland Monitoring POC	Jens Geratz

Table 4. Pro	ject Background
Project County	Richmond
Drainage Area	2.5 square miles
Impervious cover estimate (%)	<5 percent
Stream Order	3rd order
Physiographic Region	Southeastern Plains
Ecoregion (Griffith and Omernik)	Sandhills
Rosgen Classification of As-built	DA5/E5
Cowardin Classification	Stream (R2UB2)
Dominant soil types	Johnston (JmA)
	Ailey (AcB, AcC)
	Candor-Wakulla Complex (CaC, WcB)
Reference Site ID	Falling Creek
USGS HUC for Project and Reference	03040201
NCDWQ Sub-basin for Project and Reference	03-07-16
NCDWQ classification for Project and Reference	WSIII
Any portion of any project segment 303d listed?	No
Any portion of any project segment upstream of a	Yes
303d listed segment?	
Reasons for 303d listing or stressor	Aquatic weeds
Percent of project easement fenced	NA

2.0 PROJECT CONDITION AND MONITORING RESULTS

The monitoring results described herein document the Year 5 (2010) monitoring activities. Stream monitoring activities continued at two (2) stream reaches that were established in April 2006. Each monitoring reach is approximately 150 feet in length and is comprised of one (1) stream cross-section where stream profile and dimension are monitored. Another 575 feet of stream channel profile and eight (8) cross-sections were added to the Site monitoring activities in October 2006 (Figure 2, Appendix A). Wetland vegetation monitoring activities were conducted in September 2010 and consist of an inventory of planted and volunteer species within eight (8) plots located throughout the former pond (Figure 4, Appendix A). Wetland hydrology monitoring activities include groundwater gauge monitoring conducted throughout the growing season (March 27 - November 5) (NRCS 1999) at four (4) gauges located within the former pond (Figure 5, Appendix A).

2.1 Stream Assessment

2.1.1 Stream Channel Morphology

Stream channel cross-sectional surveys were performed at ten (10) on-site monitoring locations in September 2010 [XS1-8 and XSR2-3] (Figure 2, Appendix 2). Bankfull channel geometry for surveyed cross-sections are presented in Tables 5, 6, 6a, and 6b. Cross-section parameters were not generated for XS2, XS7, or XS8 where stream braiding has resulted in multiple active channels. Some parameters including width/depth ratio, entrenchment ratio, wetted perimeter, and hydraulic radius were generated for riffles only. Stream pattern parameters including channel beltwidth, radius of curvature, meander wavelength, and meander width ratio were also re-evaluated during Year 5 monitoring. Cross-section plots are represented in Figures B1-B10 in Appendix B. Bankfull elevations depicted in cross-section plots were adjusted as needed.

In general, bankfull channel parameters indicate minor change compared to conditions assessed during Year 4 monitoring. Scouring and transportation of bank and bed material was detected at some monitoring cross-sections where restored channels continue to migrate toward reference conditions. Soil subsidence has diminished as herbaceous and woody vegetation further stabilize the soil and begin to provide shading to the developing forest floor.

Stream longitudinal profile was surveyed for approximately 900 feet within the restored channel, including the section of stream between on-Site Reach 3 and on-Site Reach 2 (Figure 2, Appendix A). Longitudinal profile data for this portion of the stream is plotted along with previous years conditions in Figure B-11, Appendix B. The Site's natural low gradient and the large amount of coarse woody debris present within the channel has produced numerous depositional features (traverse and diagonal bars) scattered among scour pools of varying sizes. As a result, longitudinal profile parameters were not generated for the stream due to the complexity and irregularity of the channel bed.

The stream channel substrate is naturally comprised of more than 90 percent (90%) sand throughout the Site. As a result, substrate sampling was not conducted at the cross-sections and is not included with the summarized cross-sectional parameters in Tables 5-6b.

Table 5. Baseline Morphology and Hydrologic Summary															
	Reg	gional C	urve	Refe	rence S	tream	Ref	erence S	tream		As-Buil	lt		As-Buil	t
Parameter		Interval	-		Reach 1			Reach	4	On-	Site Rea	ach 2	Or	-Site Rea	ach 3
				(23)	3 linear	feet)	(17	5 linear	feet)	(186	6 linear	feet)	(29	93 linear	feet)
									,						
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	9.6	13.5	12.7	N/A	N/A	13.0	N/A	N/A	9.1	N/A	N/A	7.9	N/A	N/A	11.3
Floodprone Width (ft)	300.0	600.0	400.0	N/A	N/A	500.0	N/A	N/A	300.0	N/A	N/A	450.0	N/A	N/A	400.0
BF Cross Sectional Area (ft ²)	9.4	18.1	16.1	N/A	N/A	14.3	N/A	N/A	9.0	N/A	N/A	7.6	N/A	N/A	10.8
BF Mean Depth (ft)	1.0	1.3	1.3	N/A	N/A	1.1	N/A	N/A	1.0	N/A	N/A	1.0	N/A	N/A	1.0
BF Max Depth (ft)	N/A	N/A	N/A	N/A N/A	N/A	1.9	N/A	N/A	2.0	N/A	N/A	1.3	N/A	N/A	1.5
Width/Depth Ratio	9.8	10.0			N/A	11.4	N/A	N/A	9.2	N/A	N/A	8.3	N/A	N/A	11.7
Entrenchment Ratio	28.4	49.7	32.2	N/A	N/A	38.6	N/A	N/A	33.0	N/A	N/A	57.0	N/A	N/A	35.5
Wetted Perimeter (ft)	N/A	N/A	N/A	N/A	N/A	14.9	N/A	N/A	10.9	N/A	N/A	9.4	N/A	N/A	12.4
Hydraulic Radius (ft)	N/A	N/A	N/A	N/A	N/A	1.0	N/A	N/A	0.8	N/A	N/A	0.8	N/A	N/A	0.9
Pattern															
Channel Beltwidth (ft)	N/A	N/A	N/A	18.2	35.5	22.1	12.6	18.5	14.0	19.3	22.6	21.0	8.9	20.9	11.0
Radius of Curvature (ft)	N/A	N/A	N/A	18.6	46.3	21.1	4.2	27.7	6.8	10.3	24.3	15.8	4.1	18.2	13.4
Meander Wavelength	N/A	N/A	N/A	61.2	88.1	78.9	17.5	44.6	21.6	39.1	59.9	47.9	19.1	49.2	28.0
Meader Width Ratio	N/A	N/A	N/A	1.4	2.8	1.7	1.5	2.2	1.6	1.6	1.9	1.7	1.5	2.2	1.9
Profile															
Riffle Length (ft)	N/A	N/A	N/A	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Riffle Slope (ft)	N/A	N/A	N/A	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Pool Length (ft)	N/A	N/A	N/A	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Pool Spacing (ft)	N/A	N/A	N/A	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Substrate															
d50 (mm)	N/A	N/A	N/A	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
d84 (mm)	N/A	N/A	N/A	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*
Additional Reach Parameters				I			Ι			I			l		
Valley Length (ft)		N/A			N/A			N/A			N/A			N/A	
Channel Length (ft)		N/A			N/A			N/A			N/A			N/A	
Sinuosity		N/A			1.3			1.1			1.1			1.1	
Water Surface Slope (ft/ft)		N/A			0.003			0.005			0.004			0.004	
BF Slope (ft/ft)		N/A			0.003			0.005		1	0.004			0.004	
Rosgen Classification		N/A			E5			E5		1	E5			E5	
Habitat Index		N/A			NA*			NA*			NA*			NA*	
Macrobenthos		N/A			NA*			NA*			NA*			NA*	

^{*}See document text for details.

	Table 6. Morphology and Hydraulic Monitoring Summary																	
Parameter	Cross-Section XS1 - Pool						Cross-Section XS2 – Braided Channels					Cross-Section XS3 - Riffle						
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+
BF Width (ft)	11.8	11.8	9.5	10.9	8.8		NA*	NA*	NA*	NA*	NA*		8.4	8.8	8.3	8.7	8.7	
Floodprone Width (ft)	400.0	400.0	400.0	400.0	400.0		NA*	NA*	NA*	NA*	NA*		400.0	400.0	400.0	400.0	400.0	
BF Cross Sectional Area (ft ²)	4.9	4.9	5.3	6.4	4.2		NA*	NA*	NA*	NA*	NA*		4.2	6.3	4.7	6.0	8.3	
BF Mean Depth (ft)	0.4	0.4	0.6	0.6	0.5		NA*	NA*	NA*	NA*	NA*		0.5	0.7	0.6	0.7	1.0	
BF Max Depth (ft)	0.8	0.8	0.8	0.9	0.7		NA*	NA*	NA*	NA*	NA*		1.0	1.2	0.9	1.2	1.6	
Width/Depth Ratio	NA*	NA*	NA*	NA*	NA*		NA*	NA*	NA*	NA*	NA*		16.7	12.4	14.8	12.4	8.7	
Entrenchment Ratio	NA*	NA*	NA*	NA*	NA*		NA*	NA*	NA*	NA*	NA*		47.9	45.4	48.3	45.9	46.0	
Wetted Perimeter (ft)	NA*	NA*	NA*	NA*	NA*		NA*	NA*	NA*	NA*	NA*		9.3	8.7	8.6	8.6	9.5	
Hydraulic Radius (ft)	NA*	NA*	NA*	NA*	NA*		NA*	NA*	NA*	NA*	NA*		0.4	0.7	0.5	0.7	0.9	
Substrate																		
d50 (mm)	NA*	NA*	NA*	NA*	NA*		NA*	NA*	NA*	NA*	NA*		NA*	NA*	NA*	NA*	NA*	
d84 (mm)	NA*	NA*	NA*	NA*	NA*		NA*	NA*	NA*	NA*	NA*		NA*	NA*	NA*	NA*	NA*	
Parameter	MY	7-01 (20	006)	MY	-02 (20	07)	MY	-03 (20	008)	MY	-04 (20	009)	MY	7-05 (20)10)			
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)	8.9	22.6	15.6	NA*	NA*	NA*	6.9	32.3	15.5	NA*	NA*	NA*	7.2	28.9	15.2			
Radius of Curvature (ft)	4.1	24.3	13.4	NA*	NA*	NA*	5.6	29.2	21.0	NA*	NA*	NA*	5.1	27.2	19.4			
Meander Wavelength	19.1	59.9	38.0	NA*	NA*	NA*	18.4	70.4	49.0	NA*	NA*	NA*	18.9	63.8	41.0			
Meader Width Ratio	1.5	2.2	1.9	NA*	NA*	NA*	0.8	2.5	1.5	NA*	NA*	NA*	1.0	2.1	1.8			
Profile																		
Riffle Length (ft)	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*			
Riffle Slope (ft)	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*			
Pool Length (ft)	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*			
Pool Spacing (ft)	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*	NA*			
Additional Reach Parameters				I									I					
Valley Length (ft)		N/A			N/A			N/A			N/A			N/A				
Channel Length (ft)		N/A			N/A			N/A			N/A			N/A				
Sinuosity		1.1			1.1			1.1			1.1			1.1				
Water Surface Slope (ft/ft)		0.004			0.004			0.004			0.004			0.004				
BF Slope (ft/ft)		0.004			0.004			0.004			0.004			0.004				
Rosgen Classification		DA5/E5			DA5/E5			DA5/E5			DA5/E5			DA5/E5				
Habitat Index		NA*			NA*			NA*			NA*			NA*				
Macrobenthos		NA*			NA*			NA*			NA*			NA*				

^{*}See document text for details.

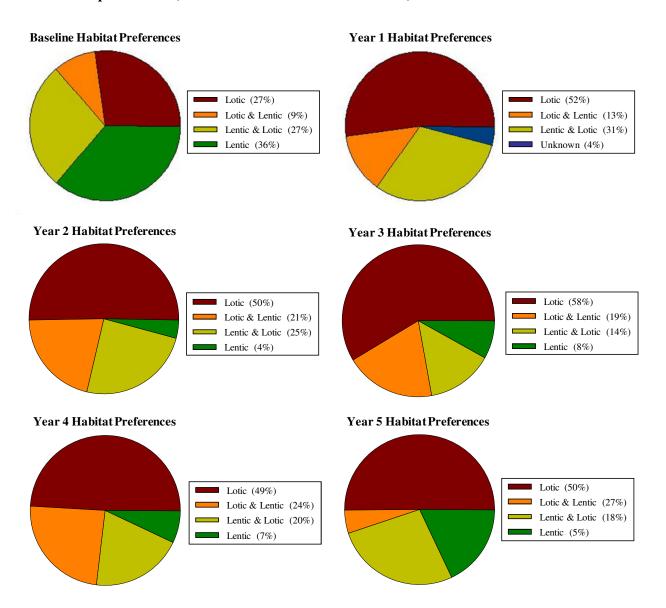
Table 6a. Morphology and Hydraulic Monitoring Summary (Cont.)																				
Parameter		Cross	-Section	n XS4 -	Riffle			Cross-S	Section	XSR2 -	Riffle			Cross	s-Sectio	n XS5 -	Pool			
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+		
BF Width (ft)	25.1	29.8	37.3	25.0	19.3		7.9	8.9	10.8	8.8	9.5		6.4	19.2	23.5	25.4	28.2			
Floodprone Width (ft)	500.0	500.0	500.0	500.0	500.0		450.0	450.0	450.0	450.0	450.0		400.0	400.0	400.0	400.0	400.0			
BF Cross Sectional Area (ft²)	6.7	14.0	24.3	25.8	12.9		7.6	8.7	11.4	9.3	9.5		3.9	6.9	12.6	16.7	14.0			
BF Mean Depth (ft)	0.3	0.5	0.7	1.0	0.7		1.0	1.0	1.0	1.1	1.0		0.6	0.4	0.5	0.7	0.5			
BF Max Depth (ft)	0.9	1.9	1.6	1.9	1.6		1.3	1.6	1.6	1.6	1.7		1.9	2.2	1.3	2.0	1.7			
Width/Depth Ratio	96.7	64.8	57.3	25.0	27.6		8.2	9.1	10.5	8.0	9.5		NA*	NA*	NA*	NA*	NA*			
Entrenchment Ratio	19.9	16.8	13.4	20.0	25.9		57.0	50.6	41.4	51.1	47.4		NA*	NA*	NA*	NA*	NA*			
Wetted Perimeter (ft)									NA*	NA*										
Hydraulic Radius (ft)								0.9	1.3	1.0	0.9		NA*	NA*	NA*	NA*	NA*			
Substrate																				
d50 (mm)	NA*	NA*	NA*	NA*	NA*		NA*	NA*	NA*	NA*	NA*		NA*	NA*	NA*	NA*	NA*			
d84 (mm)	NA*	NA*	NA*	NA*	NA*		NA*	NA*	NA*	NA*	NA*		NA*	NA*	NA*	NA*	NA*	j		
Parameter		Cross-	Section	XSR3 -	- Riffle			Cross	-Section	n XS6 -	Pool		Cross	s-Section	on XS7 -	– Braide	Braided Channels			
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+		
BF Width (ft)	11.3	16.1	15.5	11.3	16.4		13.9	21.7	23.7	22.1	25.1		NA*	NA*	NA*	NA*	NA*			
Floodprone Width (ft)	400.0	400.0	400.0	400.0	400.0		350.0	350.0	350.0	350.0	350.0		NA*	NA*	NA*	NA*	NA*			
BF Cross Sectional Area (ft²)	10.8	11.4	12.7	8.8	12.1		8.1	13.1	12.7	15.4	13.1		NA*	NA*	NA*	NA*	NA*			
BF Mean Depth (ft)	1.0	0.7	0.8	0.8	0.7		0.6	0.6	0.5	0.7	0.5		NA*	NA*	NA*	NA*	NA*			
BF Max Depth (ft)	1.5	1.8	1.5	1.4	1.8		2.5	3.3	1.9	1.9	2.0		NA*	NA*	NA*	NA*	NA*			
Width/Depth Ratio	11.7	22.9	20.7	14.1	23.4		NA*	NA*	NA*	NA*	NA*		NA*	NA*	NA*	NA*	NA*			
Entrenchment Ratio	35.5	24.9	24.2	35.4	24.4		NA*	NA*	NA*	NA*	NA*		NA*	NA*	NA*	NA*	NA*			
Wetted Perimeter (ft)	12.4	16.7	8.9	12.4	17.4		NA*	NA*	NA*	NA*	NA*		NA*	NA*	NA*	NA*	NA*			
Hydraulic Radius (ft)	0.9	0.7	1.4	0.7	0.7		NA*	NA*	NA*	NA*	NA*		NA*	NA*	NA*	NA*	NA*			
Substrate																				
d50 (mm)	NA*	NA*	NA*	NA*	NA*		NA*	NA*	NA*	NA*	NA*		NA*	NA*	NA*	NA*	NA*			
d84 (mm)	NA*	NA*	NA*	NA*	NA*		NA*	NA*	NA*	NA*	NA*		NA*	NA*	NA*	NA*	NA*			

^{*}See document text for details.

		Ta	ble 6b	. Mor	pholog	gy and H	lydrau	lic Mo	nitorin	ng Sum	mary	(Cont.))					
Parameter	Cros	Cross-Section XS8 - Braided Channels																
		ı	ı					1			1	1		1	1	ı		
Dimension	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+	MY1	MY2	MY3	MY4	MY5	MY+
BF Width (ft)	NA*	NA*	NA*	NA*	NA*													
Floodprone Width (ft)	NA*	NA*	NA*	NA*	NA*													
BF Cross Sectional Area (ft²)	NA*	NA*	NA*	NA*	NA*													
BF Mean Depth (ft)	NA*	NA*	NA*	NA*	NA*													
BF Max Depth (ft)	NA*	NA*	NA*	NA*	NA*													
Width/Depth Ratio	NA*	NA*	NA*	NA*	NA*													
Entrenchment Ratio	NA*	NA*	NA*	NA*	NA*													
Wetted Perimeter (ft)	NA*	NA*	NA*	NA*	NA*													
Hydraulic Radius (ft)	NA*	NA*	NA*	NA*	NA*													
Substrate							_											
d50 (mm)	NA*	NA*	NA*	NA*	NA*													
d84 (mm)	NA*	NA*	NA*	NA*	NA*													

^{*}See document text for details.

2.1.2 Stream Problem Areas


No stream problem areas were observed during Year 5 monitoring. During Year 4 monitoring, PBS&J initiated beaver management and minor grading activities on the former Dam location. Grading efforts have successfully reduced the opportunity for beavers to re-construct dams on-Site and no further beaver activity has been observed.

2.1.3 Aquatic Communities

Benthic macroinvertebrates were sampled within Falling Creek during Year 5 monitoring in late September 2010. Aquatic community data, located in Appendix C, are based on laboratory identifications of benthic macroinvertebrate taxa by Pennington and Associates, Inc., a NCDWQ-certified lab. A temporal comparison between collected benthic habitat and their preferences are provided in Graph 1.

Fifty percent (50%) of the macroinvertebrate samples collected during Year 5 monitoring from restored segments of Falling Creek (within the former pond) consisted of macroinvertebrate genera predominantly found in lotic systems. Genera found in both lotic and lentic systems (with a preference for lotic) increased three percent within Falling Creek, while genera favoring lentic and lotic (with a preference for lentic) decreased. Genera predominantly found in lentic systems made up only five percent of taxa collected from Falling Creek. Overall, the Year 5 data indicates an aquatic community assemblage that continues to transition from lentic to lotic as favorable habitat increases within Falling Creek.

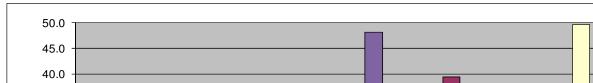
Graph 1. Comparisons between collected benthic macroinvertebrates and their habitat preferences (Source: Merritt and Cummins 1984).

In addition to benthic macroinvertebrate habitat preference comparisons, other comparative metrics including the total number of organisms collected, the total taxa represented in the collection, the richness (diversity) of EPT taxa, and the biotic index can be used to evaluate aquatic habitat restoration. Table 7 summarizes the mean values for all these metrics from benthic macroinvertebrates collected within Falling Creek prior to dam removal and all subsequent monitoring years.

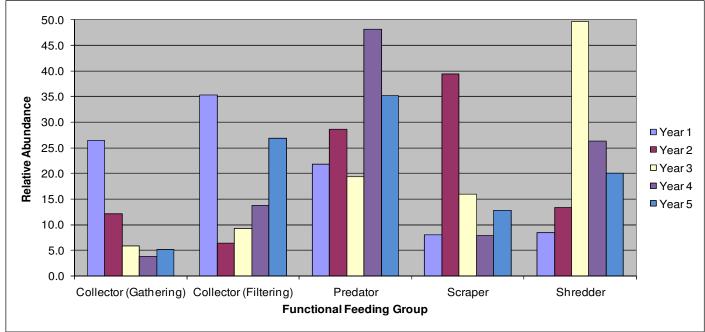
7	Гable 7. Benthic M	acroinvertebrate	Metric Summary	
Monitoring Year	Total Organisms	Total Taxa	EPT Richness	Biotic Index*
Baseline (2005)	32	15	2	7.42
Year 1 (2006)	209	35	16	5.33
Year 2 (2007)	187	38	12	4.95
Year 3 (2008)	73	24	8	5.21
Year 4 (2009)	148	37	12	5.43
Year 5 (2010)	150	33	10.5	4.27

^{*}The biotic index is derived from North Carolina Tolerance Values that are assigned to each collected species. These Tolerance Values range from 0 for organisms intolerant of organic wastes to 10 for organisms very tolerant of organic wastes.

Data from 2006-2007 monitoring suggests that there may have been an initial colonization spike of opportunistic species during the early successional stages of stream development. While the total number of organisms collected in 2006 has not been surpassed in subsequent monitoring years, the Year 5 data represents the lowest biotic index recorded during project monitoring. A decrease (improvement) in the biotic index indicates a macroinvertebrate community less tolerant of organic wastes (analogous to improved water quality). Compared to baseline (2005) values, Year 5 summary data represents a continued progression towards a restored aquatic community composition.


2.1.4 Habitat Assessment

North Carolina Division of Water Quality (NCDWQ) Habitat Assessment Forms (HAFs) were completed at each cross-section location across the Site (Appendix D). Minor improvements in HAF scores were observed during Year 5 monitoring. This improvement is largely due to the favorable prevalence of instream habitat including sticks, snags, logs, leafpacks, and macrophytic vegetation as well as an increase in stream shading. The HAF mean score from restored and enhanced stream segments quantitatively increased in each of the five monitoring years. The HAF scores are summarized in Table 8.


Table 8. NCDWQ Habita	t Assessm	ent Form	Scores									
Chang postion	Score											
Cross-section	Year 1	Year 2	Year 3	Year 4	Year 5							
XSR1 (Reference)	98	98	96	98	98							
XSR4 (Reference)	97	97	96	95	96							
Mean (Reference)	97.5	97.5	96	96.5	97							
XS1	78	95	91	93	93							
XS2	80	80	82	89	88							
XS3	84	98	93	93	93							
XS4	63	66	75	83	84							
XSR2	88	93	88	88	91							
XS5	69	80	83	83	83							
XSR3	85	90	88	87	88							
XS6	65	71	74	77	75							
XS7	74	76	82	77	80							
XS8	86	90	91	90	90							
Mean	81.9	87.0	87.3	88.4	88.9							

Stream habitat characterizations depicting aquatic in-stream habitat composition were completed using plan-view drawings derived from total station surveys of the stream monitoring reaches. Drawings were updated in the field through visual observation and habitat composition was transcribed onto each drawing by hand. Drawings were digitized using GIS technology to determine rough estimates of habitat type representation. Representative habitat includes adjacent stream bank trees, root mats/balls, stumps, coarse woody debris, and undercut banks. Figure 3 (Appendix A) depicts the Year 5 stream habitat composition. Compared to previous monitoring years, Reaches 2 and 3 show both an increase in habitat quantity, and habitat type, particularly with regards to in stream woody debris. Reaches 2 and 3 still contain an abundance of macrophytic vegetation compared to the reference reaches (1 and 4). The macrophytic vegetation is expected to diminish as the riparian community continues developing, and shading increases.

During Year 5 benthic macroinvertebrate monitoring, an increase in the number of collectors (both gathering and filtering) and scrapers was observed. The increased abundance of collectors and scrapers suggests a possible increase in their available food source, macrophytes and fine particle organic matter respectively. This may be attributed to an increase in riparian litterfall and organic input from the surrounding floodplain. Year 5 monitoring also indicates a decrease in the number of predators and shredders, although predators still make up the largest relative abundance. The following graph displays functional feeding group composition following dam removal at the Site.

Graph 2. Functional Feeding Group Composition

2.2 Wetland Assessment

2.2.1 Vegetation Assessment

Eight (8) 10 x 10 meter plots (VP 2-7 and VP 9-10) were sampled in accordance with the Carolina Vegetation Survey Protocol (Figure 4, Appendix A). Vegetation plots 9 and 10 were installed last year following the remedial grading activities performed on the footprint of the former dam. Success criteria for vegetation requires that at least 320 stems per acre must survive after the completion of the third growing season. The required survival criterion will decrease by 10 percent per year after the third year of vegetation monitoring (i.e. for an expected 260 stems per acre for Year 5). The Site is currently meeting the established success criteria for vegetation based on the survival of the planted species with an average density of 491 stems per acre. Including all volunteer species raises the vegetation survival within the Site to 4,467 stems per acre.

Both plots 9 and 10 are exceeding the required survival criterion with an average density of 607 stems per acre and 647 stems per acre respectively (average density of 627 stems per acre). As discussed with EEP, if vegetation success of remedial planted stems within plots 9 and 10 are on target at the end of Year 5, then no additional vegetative monitoring will be required

An inventory of planted stems within plots 2-7 are given in Table 9, and an inventory of planted stems within new plots 9-10 are given in Table 9a. The Site met the density requirement for success in all monitoring years. A tally of volunteer woody species is listed in Table 9b. Year 5 photographs of vegetation plots are provided in Appendix E.

						Г	able 9.	Stem	Counts	for Plan	ted Spe	cies Arr	anged by	y Plot				
	Year 5 Plots*							tial tals	Year 1 Totals		Year 2 Totals		Year 3 Totals		Year 4 Totals**		Year 5 Totals**	
Species	2	3	4	5	6	7	Stems/ Plot	Stems/ Acre	Stems/ Plot	Stems/ Acre	Stems/ Plot	Stems/ Acre	Stems/ Plot	Stems/ Acre	Stems/ Plot	Stems/ Acre	Stems/ Plot	Stems/ Acre
Chamaecyparis thyoides	2	3	2	2	6	5	32	162	31	157	31	157	30	152	23	155	20	135
Liriodendron tulipifera	0	1	0	0	0	0	6	30	6	30	3	15	1	5	1	7	1	7
Magnolia virginiana	1	3	0	0	0	0	10	51	10	51	11	56	5	25	5	34	4	27
Nyssa biflora	4	3	6	0	2	5	29	147	29	147	28	142	30	152	20	135	20	135
Persea borbonia	0	0	0	0	0	0	1	5	1	5	1	5	0	0	0	0	0	0
Pinus serotina	1	3	6	6	4	1	32	162	32	162	30	152	36	182	26	175	21	142
Pinus taeda	0	0	0	0	0	0	12	61	12	61	12	61	4	20	1	7	0	0
Site Total							122	618	121	613	116	588	106	536	76	513	66	446

^{*}Plots 1 and 8 were replaced following on-Site grading. See Table 9b.

^{**} Total values differ from previous years because Plots 1 and 8 were replaced.

Table 9a. Stem Counts for Planted Species at New Plots									
	Year 5	5 Plots	Year 4	Totals	Year 5 Totals				
Species	9	10	Stems/ Plot	Stems/ Acre	Stems/ Plot	Stems/ Acre			
Chamaecyparis thyoides	2	3	6	121	5	101			
Liriodendron tulipifera	3	0	3	61	3	61			
Magnolia virginiana	3	3	6	121	6	121			
Nyssa biflora	7	10	18	364	17	344			
Site Total	33	667	31	627					

	Table 9b. Stem Counts for Volunteer Species Arranged by Plot																	
	Year 5 Plots								Year 1	Totals	Year 2	Totals	Year 3	Totals	Year 4	Fotals**	Year 5	Totals**
Species	1 car 5 1 ious								Stems/	Stems/	Stems/							
	2	3	4	5	6	7	9*	10*	Plot	Acre	Plot	Acre	Plot	Acre	Plot	Acre	Plot	Acre
Acer rubrum	11	11	21	1	3	30	21	0	12	61	16	81	25	126	24	121	98	496
Betula nigra	0	0	0	0	0	0	0	1	0	0	5	25	0	0	0	0	1	5
Chamaecyparis thyoides	2	0	1	0	12	3	0	0	0	0	4	20	13	66	7	35	18	91
Cyrilla racemifllora	0	2	0	0	22	0	0	0	1	5	0	0	4	20	5	25	24	121
Liquidambar stryaciflua	2	2	0	1	0	0	0	0	0	0	1	5	1	5	2	10	5	25
Liriodendron tulipifera	2	0	0	0	16	1	2	6	14	71	7	35	5	25	4	20	27	137
Magnolia virginiana	3	2	0	0	1	0	0	1	2	10	1	5	8	40	6	30	7	35
Nyssa biflora	1	0	0	0	0	0	0	0	0	0	1	5	0	0	1	5	1	5
Pinus serotina	71	171	16	63	283	24	32	31	105	531	168	850	532	2691	339	1715	691	3495
Pinus taeda	0	0	0	0	0	0	0	0	0	0	29	147	6	30	0	0	0	0
Salix nigra	1	0	0	0	0	2	0	0	7	35	1	5	1	5	2	10	3	15
Clethra alnifolia	0	0	0	0	0	0	0	0	1	5	1	5	0	0	0	0	0	0
Baccharis halimifolia	0	0	0	0	0	0	0	0	1	5	0	0	1	5	0	0	0	0
Kalmia angustifolia	0	0	0	0	0	0	0	0	1	5	0	0	0	0	0	0	0	0
Vaccinium corymbosum	0	0	0	0	1	0	0	1	0	0	2	10	0	0	0	0	2	10
Lyonia lucida	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	5
Ilex glabra	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0	5	25
		Site	Tot	al					144	728	236	1193	596	3013	390	1971	883	4465

^{*}New vegetation plot established following on-Site grading. See previous Table 9a.

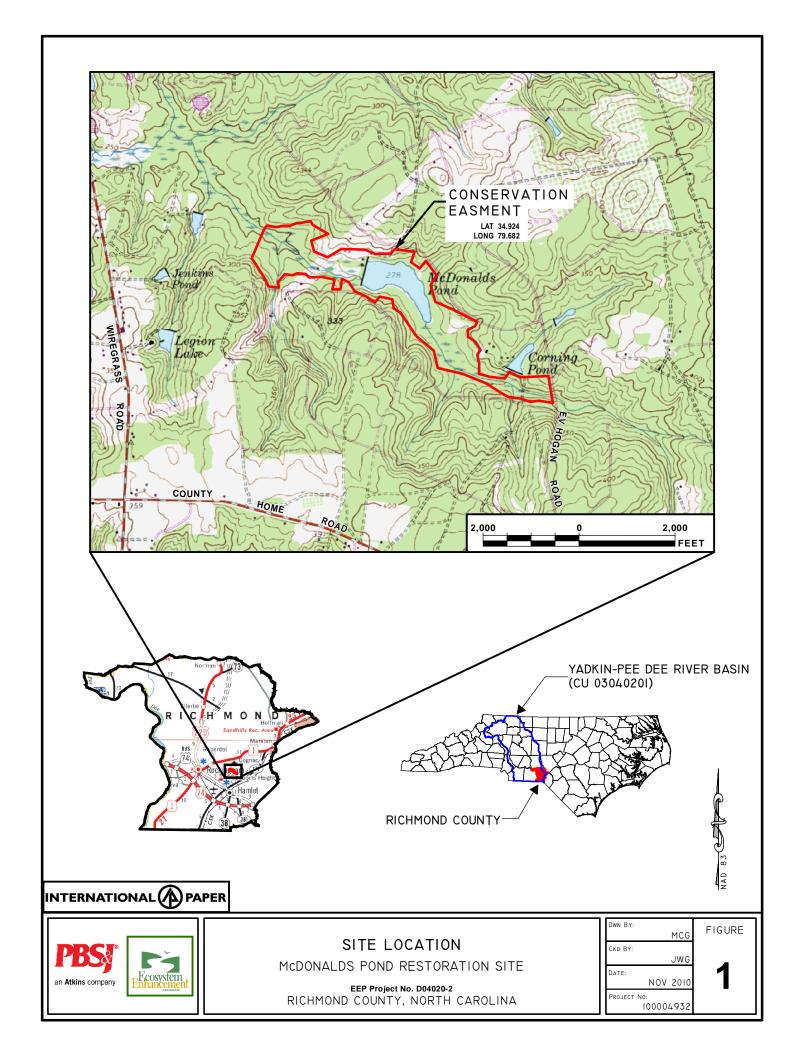
^{**} Total values differ from previous years because Plots 1 and 8 were replaced.

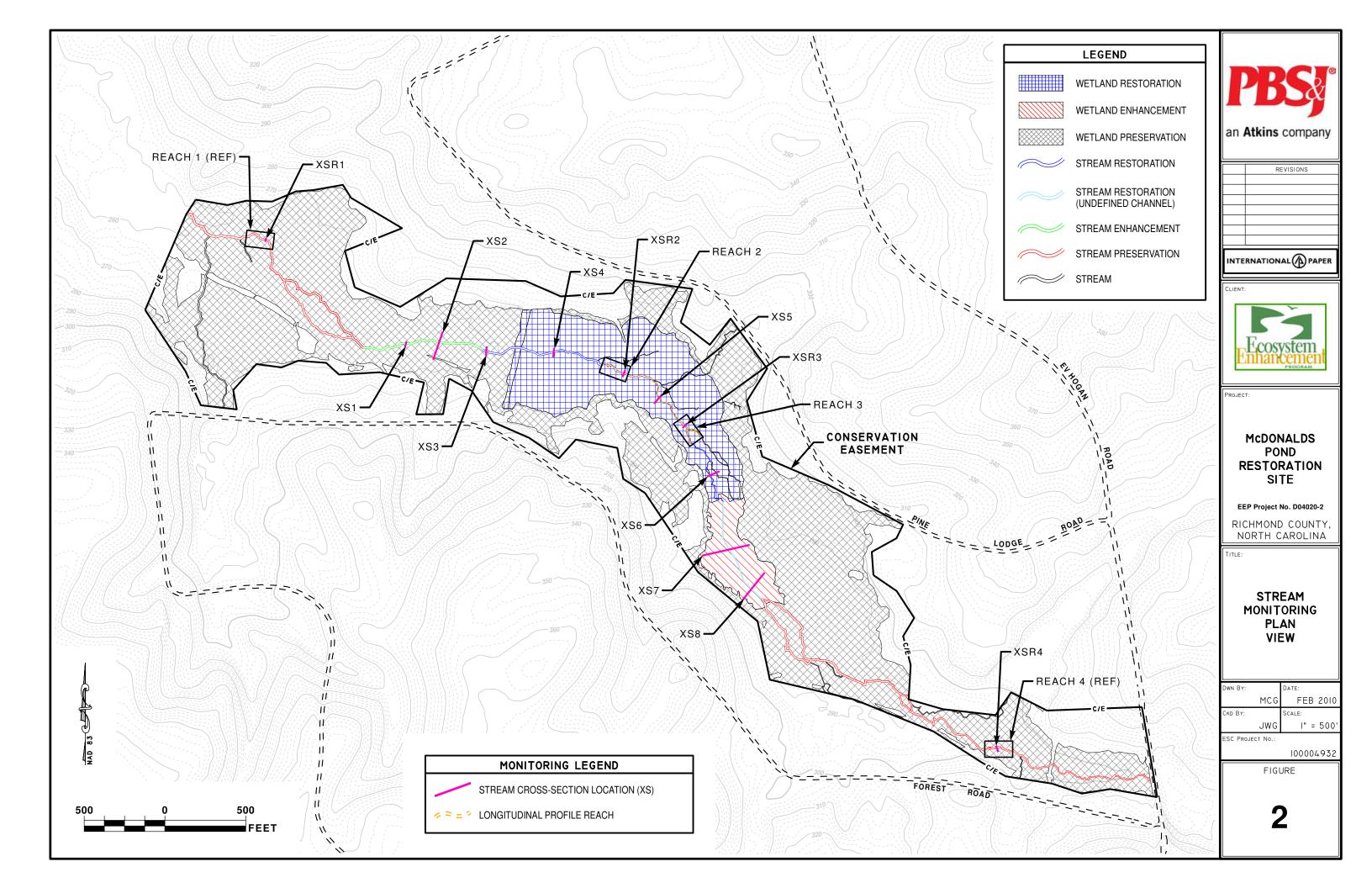
2.2.2 Groundwater Hydrology

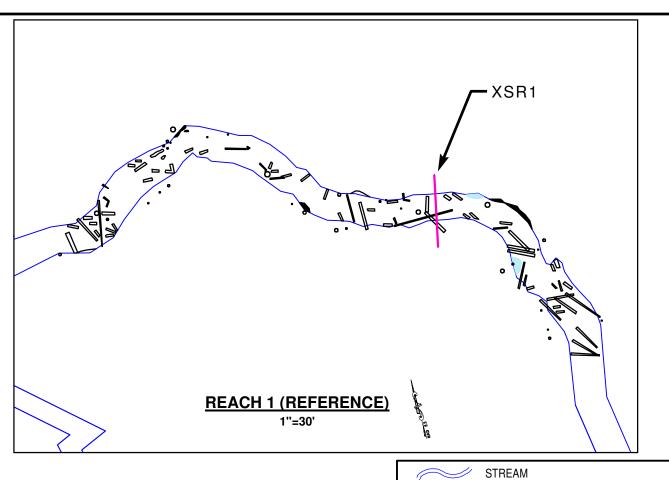
Success criteria for groundwater hydrology on the Site requires that wetland mitigation areas be inundated or saturated (within 12 inches of the surface) by surface or groundwater for at least 28 consecutive days (Richmond County, NRCS) or 12.5 percent of the growing season (March 27 - November 5). Groundwater gauge locations (Gauges 1- 4) are depicted in Figure 5 (Appendix A). Groundwater gauge hydrographs are plotted on Figure F-1 in (Appendix F). All four groundwater gauges located on-Site are currently meeting the wetland hydrologic success criteria. Gauge 3 likely recorded groundwater within 12 inches of the surface longer than the reported 75 days, but gauge malfunction resulted in data loss from July 20 through September 2. With the exception of 2009 (gauge 3 malfunction), all groundwater gauges on the Site achieved success criteria within each of the last five monitoring years indicating the establishment of wetland hydrology in the former pond footprint.

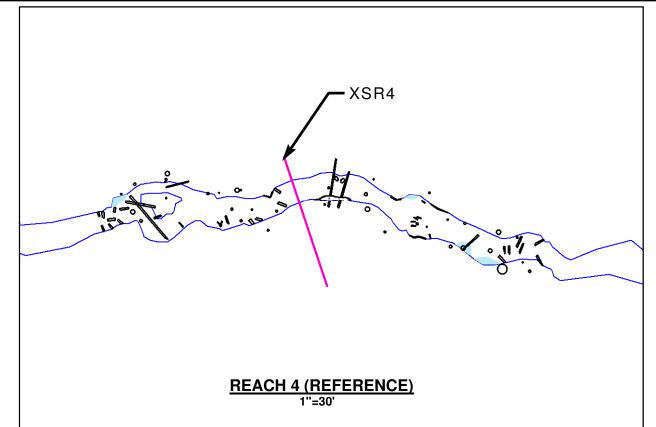
2.2.3 Wetland Criteria Attainment

	Table 10. Wetland Criteria Attainment									
X 7	C ID		Gauge Hydrology	Vegetation	Vegetation Survival					
Year	Gauge ID		Threshold Met?	Plot ID	Threshold Met?					
	Cours 1	Vac	201 days (200) of anarring sassan)	1	Yes					
	Gauge1	Yes	201 days (89% of growing season)	2	Yes					
	Cours	Vac	00 days (AAC) of anaving sassan)	3	Yes					
2006	Gauge2	Yes	98 days (44% of growing season)	4	Yes					
(Year 1)	C	*7	216.1. (06% - 6	5	Yes					
	Gauge3	Yes	216 days (96% of growing season)	6	Yes					
	C1	V	205 1 (010/ -f	7	Yes					
	Gauge4	Yes	205 days (91% of growing season)	8	Yes					
	G 1	X 7	105 1 (450 5	1	Yes					
	Gauge1	Yes	105 days (47% of growing season)	2	Yes					
	C 2	37	06.1 (426) 6	3	Yes					
2007	Gauge2	Yes	96 days (43% of growing season)	4	Yes					
(Year 2)	Gauge3	**	212.1 (0.16)	5	Yes					
		Yes	212 days (94% of growing season)	6	Yes					
	Gauge4	Yes	121 1 (50% 5	7	Yes					
			131 days (58% of growing season)	8	Yes					
	~ .			1	Yes					
	Gauge1	Yes	58 days (26% of growing season)	2	Yes					
		***	7 0.1 (26% 6)	3	Yes					
2008	Gauge2	Yes	58 days (26% of growing season)	4	Yes					
(Year 3)		***	7.1. (22% S)	5	Yes					
,	Gauge3	Yes	74 days (33% of growing season)	6	Yes					
	G 4	***		7	Yes					
	Gauge4	Yes	72 days (32% of growing season)	8	Yes					
	~ .			2	Yes					
	Gauge1	Yes	42 days (19% of growing season)	3	Yes					
		***	20.1 (4.7% 6	4	Yes					
2009	Gauge2	Yes	38 days (17% of growing season)	5	Yes					
(Year 4)	G 2	27.4	G	6	Yes					
	Gauge3	NA	Gauge Malfunction	7	Yes					
	G .	***	47.1 (21%) 6	9	Yes					
	Gauge4	Yes	47 days (21% of growing season)	10	Yes					
	~ ·			2	Yes					
	Gauge1	Yes	85 days (38% of growing season)	3	Yes					
	Covera	V	79 days (250) of	4	Yes					
2010	Gauge2	Yes	78 days (35% of growing season)	5	Yes					
(Year 5)	Gauge3	Yes	75 days (33% of growing season)	6	Yes					
				7	Yes Yes					
	Gauge4	Yes	85 days (38% of growing season)	9	Yes					

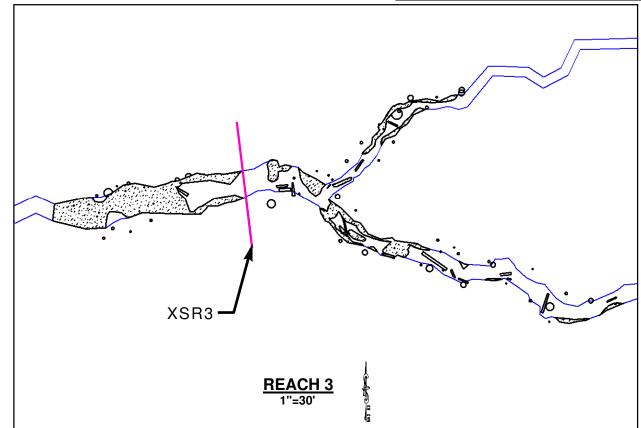

REFERENCES

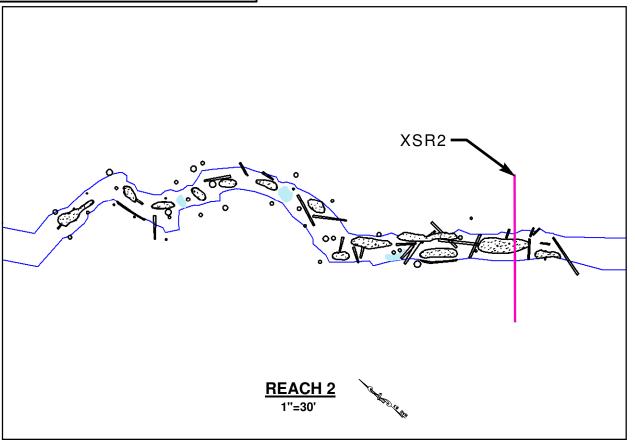

- Natural Resources Conservation Service (NRCS). 1999. Soil Survey of Richmond County, North Carolina. United States Department of Agriculture.
- Rosgen, D. 1994. Applied Fluvial Geomorphology. Wildland Hydrology: Pagosa Springs, CO.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, N.C. Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.


This Page Left Blank Intentionally


APPENDIX A: FIGURES

This Page Left Blank Intentionally





an Atkins company

REVISIONS

CLIE

PRO IECT

McDONALDS POND RESTORATION SITE

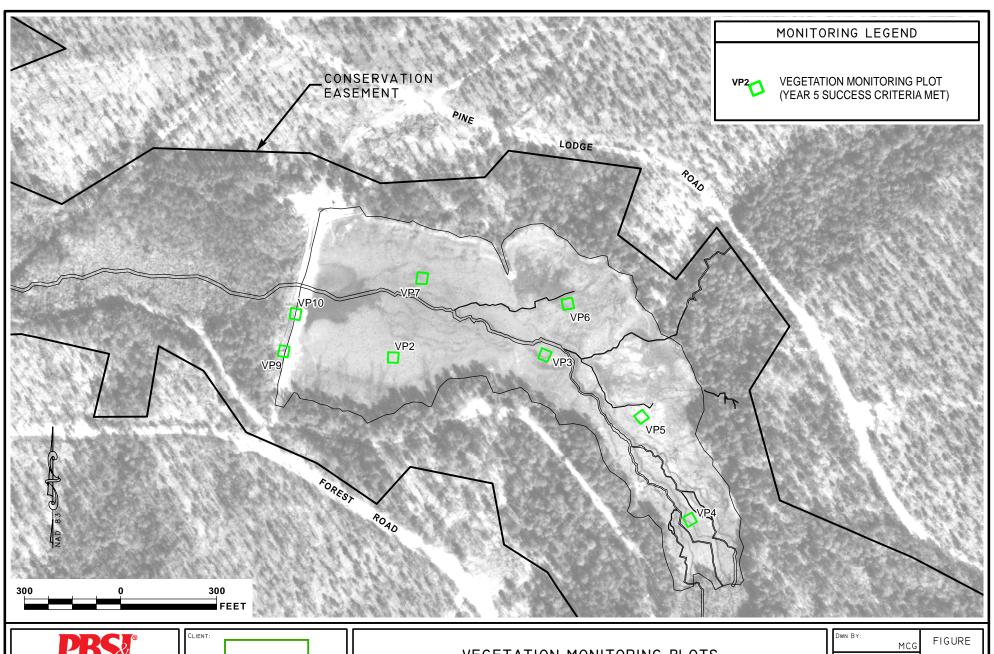
EEP Project No. D04020-2

RICHMOND COUNTY, NORTH CAROLINA

TITLE:

STREAM HABITAT COMPOSITION

2010 Year 5 Monitoring

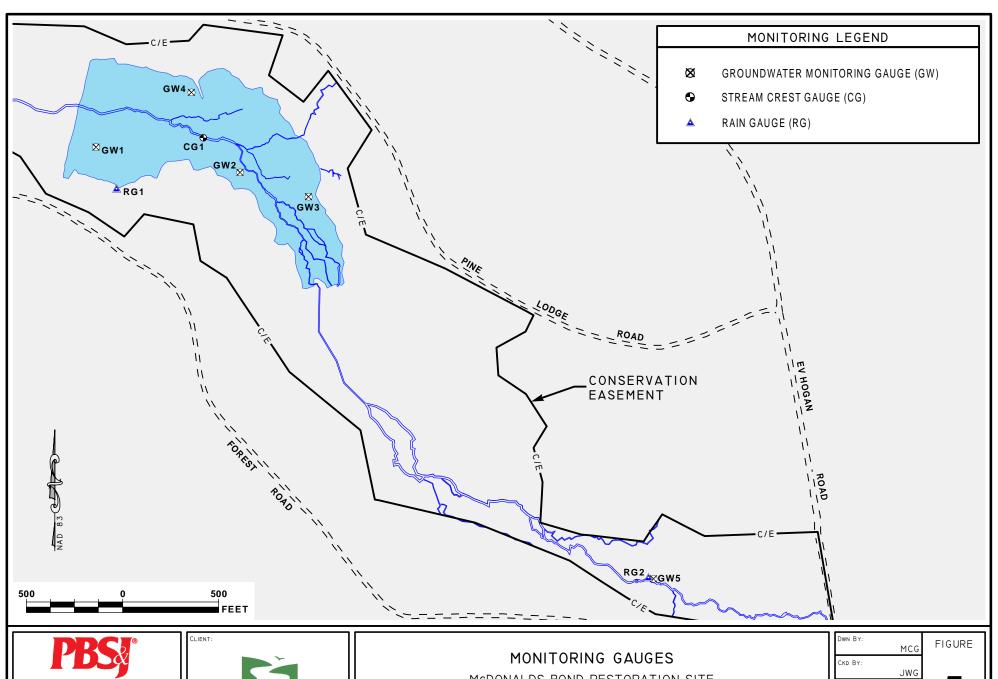

DWN BY:		DATE:
	MCG	SEP 2010
CKD BY:		SCALE:
	JWG	AS SHOWN
ESC PROJE	CT No.:	

FIGURE

07-330.00

1 10 011

3

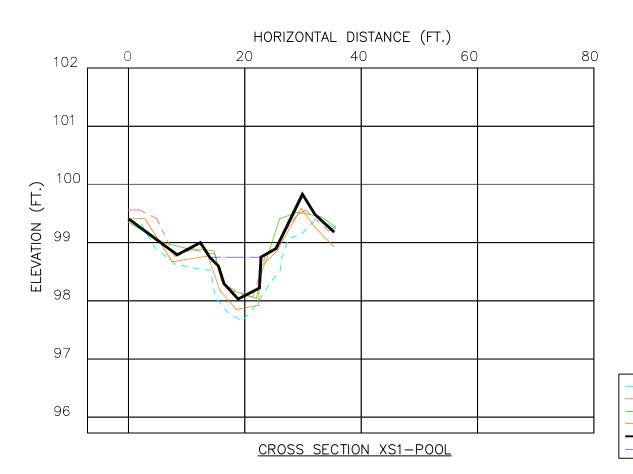

VEGETATION MONITORING PLOTS

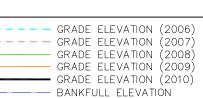
McDONALDS POND RESTORATION SITE

EEP Project No. D04020-2 RICHMOND COUNTY, NORTH CAROLINA

DWN BY:		FIG
	MCG	FIG
CKD BY:		
	JWG	
DATE:		
	NOV 2010	-
ESC PROIS	CT:	

100004932




McDONALDS POND RESTORATION SITE

EEP Project No. D04020-2 RICHMOND COUNTY, NORTH CAROLINA

_	
]	DWN BY: MCG
	CKD BY:
	DATE: NOV 2010
	ESC PROJECT: 100004932

APPENDIX B: STREAM GEOMORPHOLOGY DATA	

XS1 LEFT BANK LOOKING RIGHT BANK

XS1 LOOKING DOWNSTREAM

	SURVEY DATA			
FEATURE	ELEVATION	STATION		
blpi	100.13	0.01		
·	99.51	8.4		
	99.72	12.36		
	99.46	14.05		
	99.32	15.46		
	99.01	16.45		
	98.75	18.89		
	98.94	22.54		
	99.47	22.78		
	99.62	25.41		
	100.55	29.92		
	100.2	32.11		
brpi	99.9	35.38		
	SUMMARY DATA			
4.2 SQ. FT.	S SECTIONAL AREA	BANKFULL CROSS		
8.8 FT.	LL WIDTH	BANKFULL WIDTH		
0.5 FT.	MEAN DEPTH	BANKFULL MEAN DEPTH		
0.7 FT.	MAX DEPTH	BANKFULL MAX DEPTH		
N/A	WIDTH-DEPTH RATIO			
N/A	MENT RATIO	ENTRENCHI		
N/A	FICATION	CLASSIF		
	blpi brpi 4.2 SQ. FT. 8.8 FT. 0.5 FT. 0.7 FT. N/A N/A	ELEVATION FEATURE 100.13 blpi 99.51 99.72 99.46 99.32 99.01 98.75 98.94 99.47 99.62 100.55 100.2 99.9 99.9 brpi SUMMARY DATA SECTIONAL AREA 4.2 SQ. FT. LL WIDTH 8.8 FT. MEAN DEPTH 0.5 FT. PTH RATIO N/A MENT RATIO N/A		

NOTES:

- 1. All cross—sections facing the downstream direction
- 2. Cross—section stationing represents approximate field locations.
- 3. Elevations based on relative benchmark; left pin elevation=100.0 ft.

Survey Date	SEPT. 2010
Survey Weather	Sunny
Field Team	Schmid, Geratz
Location	XS1

an Atkins company

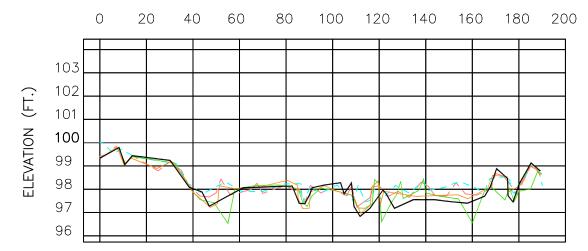
REVISIONS

McDONALDS POND RESTORATION SITE

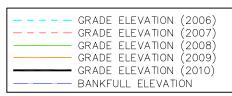
EEP Project No. D04020-2

RICHMOND COUNTY, NORTH CAROLINA

CROSS SECTION XS1-POOL


Dsn.	Ву:		Dwn. By:	
		JWC		RLG
Ckd.	Ву:		Date:	
		MCG	OCT 2	2010
Scale	::			
			NO S	CALE

Project No.:


100004932

SHEET

HORIZONTAL DISTANCE (FT.)

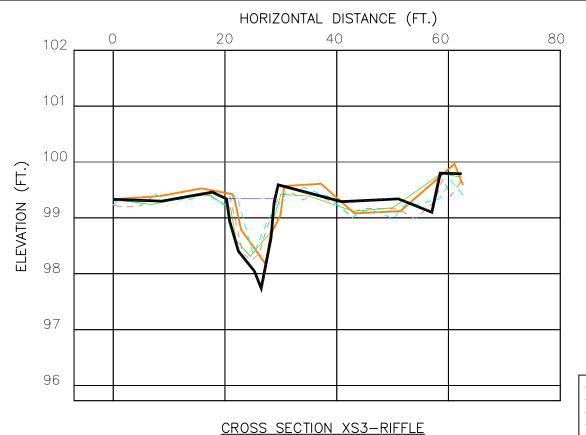
CROSS SECTION XS2-BRAIDED CHANNELS

XS2 RIGHT BANK LOOKING LEFT BANK

XS2 LOOKING DOWNSTREAM

	S				
ELEV		ON	ELEVATION	FEATURE	
			99.73	blpi	PBS
			100.19		
			99.45		
			99.84		
			99.64 98.48		
			98.29		an Atkins company
			97.67		
			97.89		
			98.46		
			98.5		
98.			98.54		REVISIONS
97.			97.79		
97.			97.78		
98.			98.19		
98.			98.46		
98.			98.57		
			98.68		
			98.2		
			98.67		
			97.66		
			97.23		
			97.59		DIAC
			98.36		
			98.24		Resource Management Service, LLC
			97.58		
			97.95		
			97.95 97.86		Client:
			97.8		
			98.1		
			98.52	eo	
			99.28	Co	
			98.86		Ecosystem
			98.12		
			97.85		Enhancement
			98.63		PROGRAM
99.			99.53		
99.			99.18	brpi	
					Project:
					I
					—∣ McDONALDS
					□ POND
					III
					─ RESTORATION
	1				SITE
					<u> </u>
					
			L		EEP Project No.
SUMMAR	SU		SUMMARY DATA		D04020−2
IONAL AR	OSS SECTIO	FULL CROSS	ROSS SECTIONAL AREA	N/A*	DIGUNACUS COLUMN
					RICHMOND COUNTY,
TH	KFULL WIDTH	BANKFU	IKFULL WIDTH	N/A*	NORTH CAROLINA
DEPTH	LL MEAN DE	BANKFULL	JLL MEAN DEPTH	N/A*	Title:
			ULL MAX DEPTH	N/A*	
			H-DEPTH RATIO	N/A*	— ABACC AFATIAN
RATIO	ICHMENT RA	ENTRENCH	NCHMENT RATIO	N/A*	CROSS SECTION
N	SSIFICATION	CLASSI	ASSIFICATION	DA5	XS2-BRAIDED
ails	t for details	ment text fo	xt for details		CHANNELS
	 S:	NOTES:	<u></u>		
sections	cross-se	1. All cr	S: cross—sections facing		Dsn. By: Dwn.

- the downstream direction
- 2. Cross—section stationing represents approximate field locations.
- 3. Elevations based on relative benchmark; left pin elevation=100.0 ft.


Survey Date	SEPT. 2010
Survey Weather	Sunny
Field Team	Schmid, Geratz
Location	XS2

Ckd. By: OCT 2010

NO SCALE Project No.:

100004932

SHEET

GRADE ELEVATION (2006)
GRADE ELEVATION (2007)
GRADE ELEVATION (2008)
GRADE ELEVATION (2009)
GRADE ELEVATION (2010)
BANKFULL ELEVATION

SURVEY DATA			
STATION	ELEVATION	FEATURE	
0	99.77	blpi	
8.76	99.74		
17.73	99.9		
20.27	99.78		
20.85	99.37		
22.43	98.84		
25.25	98.49		
26.49	98.18		
28.24	99.09		
28.77	99.7	eo	
29.5	100.03 99.73		
40.91 51.03	99.73		
57.04	99.78		
58.52	100.24		
62.37	100.23	brpi	
02.37	100.23	Бірі	
		_	
		+	
	SUMMARY DATA		
BANKFULL CROS	S SECTIONAL AREA	8.3 SQ. FT.	
BANKFU	JLL WIDTH	8.7 FT.	
BANKFULL MEAN DEPTH		1.0 FT.	
BANKFULL MAX DEPTH		1.6 FT.	
WIDTH-DEPTH RATIO		8.7	
ENTRENCHMENT RATIO		46.0	
OLACC	C5		
CLASS	L CO		

- All cross—sections facing the downstream direction
- 2. Cross—section stationing represents approximate field locations.
- 3. Elevations based on relative benchmark; left pin elevation=100.0 ft.

Survey Date	SEPT. 2010
Survey Weather	Sunny
Field Team	Schmid, Geratz
Location	XS3

XS3 LEFT BANK LOOKING RIGHT BANK

XS3 LOOKING DOWNSTREAM

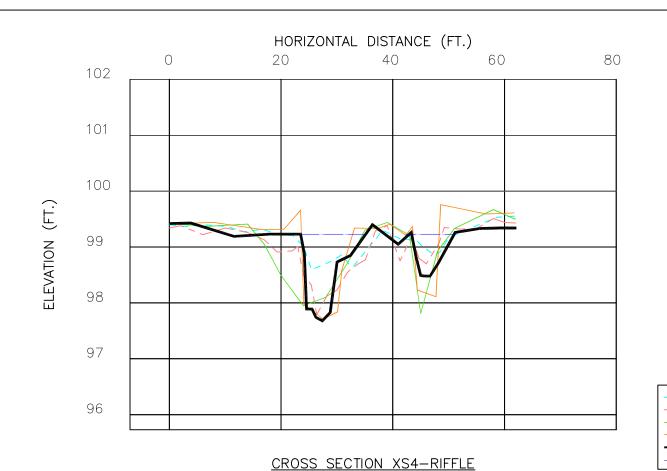
CROSS SECTION XS3-RIFFLE

an Atkins company

REVISIONS

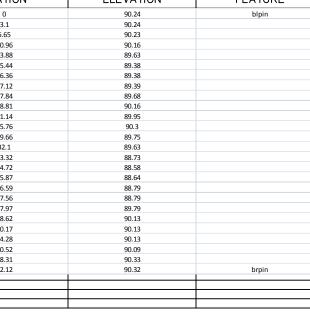
McDONALDS

POND RESTORATION SITE


EEP Project No. D04020-2

RICHMOND COUNTY, NORTH CAROLINA

Project No.: 100004932


SHEET

NO SCALE

GRADE ELEVATION (2006) GRADE ELEVATION (2007) GRADE ELEVATION (2008) GRADE ELEVATION (2009) GRADE ELEVATION (2010) BANKFULL ELEVATION

STATION	ELEVATION	FEATURE
0	90.24	blpin
3.1	90.24	
6.65	90.23	
10.96	90.16	
13.88	89.63	
15.44	89.38	
16.36	89.38	
17.12	89.39	
17.84	89.68	
18.81	90.16	
21.14	89.95	
25.76	90.3	
29.66	89.75	
32.1	89.63	
33.32	88.73	
34.72	88.58	
35.87	88.64	
36.59	88.79	
37.56	88.79	
37.97	89.79	
38.62	90.13	
40.17	90.13	
44.28	90.13	
50.52	90.09	
58.31	90.33	
62.12	90.32	brpin
	SUMMARY DATA	•
BANKFUU CROS	S SECTIONAL AREA	12.9 FT.
BANKFU	ILL WIDTH	19.3 FT.
BANKFULL MEAN DEPTH		0.7 FT.
DANKFULL	MEAN DEPIN	0.7 FT.

an Atkins company

REVISIONS

27.6

McDONALDS POND RESTORATION SITE

EEP Project No. D04020-2

RICHMOND COUNTY, NORTH CAROLINA

CROSS SECTION XS4-RIFFLE

Dsn. E	y:	Dwn. By:	
	JWC		RLG
Ckd. E	ly:	Date:	
	MCG	OCT :	2010
Scale:			
		NO S	CALE

Project No.:

100004932

B4

SHEET

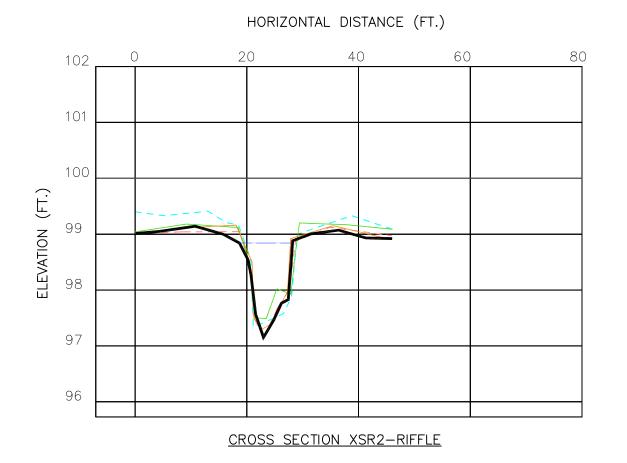
NOTES:

BANKFULL MAX DEPTH

ENTRENCHMENT RATIO

CLASSIFICATION

- 1. All cross—sections facing the downstream direction
- 2. Cross—section stationing represents approximate field locations.
- 3. Elevations based on relative benchmark; left pin elevation=100.0 ft.


Survey Date	SEPT. 2010
Survey Weather	Sunny
Field Team	Schmid, Geratz
Location	XS4

XS4 LEFT BANK LOOKING RIGHT BANK

XS4 LOOKING DOWNSTREAM

 GRADE	ELEVATION	(2006)
 GRADE	ELEVATION	(2007)
 GRADE	ELEVATION	(2008)
GRADE	ELEVATION	(2009)
GRADE	ELEVATION	(2010)

BANKFULL ELEVATION

XSR2 LEFT BANK LOOKING RIGHT BANK

XSR2 LOOKING DOWNSTREAM

	SURVEY DA	TA
STATIO	N ELEVATION	N FEATURE
0.01	99.72	blpin
4.46	99.76	
10.61	99.85	
15.6	99.71	
18.56	99.55	
20.11	99.25	
20.62	98.99	
21.49	98.27	
22.89	97.86	
24.77	98.18	
26.09	98.47	
27.33	98.54	
28.11	99.59	
31.33	99.71	
36.29	99.78	
41.24	99.64	
45.92	99.63	brpin
	SUMMARY D	ATA
BANKF	ULL CROSS SECTIONAL AREA	9.5 SQ. FT.
BANKE	ULL CROSS SECTIONAL AREA	9.5 SQ. FT.
BANKFULL WIDTH		9.5 FT.
	BANKFULL MEAN DEPTH	1.0 FT.
	DAINN OLL WILAIN DEFIII	1.0 11.
BANKFULL MAX DEPTH		1.7 FT.
WIDTH—DEPTH RATIO		9.5
WIDTH-DEFIN RATIO		3.5
ENTRENCHMENT RATIO		47.4
		F5
1	CLASSIFICATION	E5

NOTES:

- All cross—sections facing the downstream direction
- 2. Cross—section stationing represents approximate field locations.
- 3. Elevations based on relative benchmark; left pin elevation=100.0 ft.

Survey Date	SEPT. 2010
Survey Weather	Sunny
Field Team	Schmid, Geratz
Location	XSR2

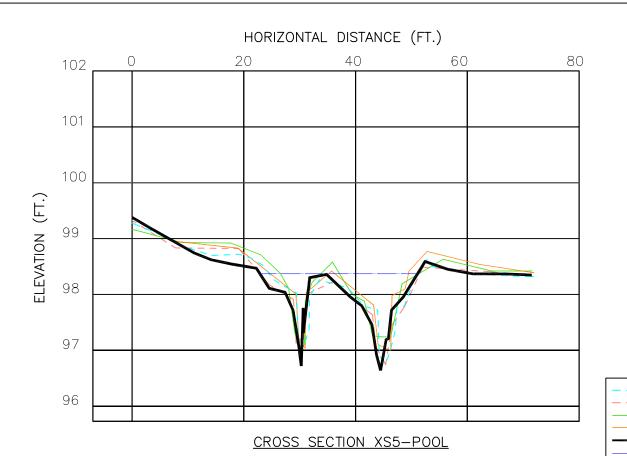
REVISIONS

McDONALDS POND RESTORATION SITE

EEP Project No. D04020-2

RICHMOND COUNTY, NORTH CAROLINA

CROSS SECTION XSR2-RIFFLE


Dsn. By:		Dwn. By:
	JWC	RLG
Ckd. By:		Date:
	MCG	OCT 2010
Scale:		

Project No.:

100004932

NO SCALE

SHEET

	46.13	9
	46.7	9
	48.84	9
	52.7	9
	56.83	9
	61.32	9
	66.82	9
	71.8	9
		SUMMA
	DANIKELII L ODOCC	CECTIONIAL A
	BANKFULL CROSS	SECTIONAL A
00.00 5.500.000 (0000)	BANKFUL	L WIDTH
GRADE ELEVATION (2006)		
GRADE ELEVATION (2007)	BANKFULL N	MEAN DEPTH
	DANIKELILI	MANY DEDTIL
GRADE ELEVATION (2009)	BANKFULL	MAX DEPTH
	WIDTH-DEI	DTII DATIO
GRADE ELEVATION (2010)	WIDTH-DEI	FIR KATIU
BANKFULL ELEVATION	ENTRENCHM	MENT RATIO
	ENTREMENT	ILIAI IVAIIO

SURVEY DATA		
STATION	ELEVATION	FEATURE
0.26	94.19	blpin
4.02	93.97	
11.44	93.55	
14.48	93.43	
18.35	93.35	
22.5	93.28	
24.81	92.92	
27.63	92.85	
29.07	92.53	
30.1	91.89	
30.54	91.53	
30.88	92.57	
30.9	92.12	
32.05	93.11	
35.06	93.17	
39.4	92.76	
41.35	92.61	
43.19	92.27	
44.04	91.72	
44.76	91.45	
45.72	92	
46.13	92.02	
46.7	92.53	
48.84	92.77	
52.7	93.4	
56.83	93.26	
61.32	93.18	
66.82	93.18	
71.8	93.16	brpin
	SUMMARY DATA	
BANKFULL CROS	S SECTIONAL AREA	14.0 SQ. FT
BANKFULL WIDTH		28.2 FT.
BANKFULL	MEAN DEPTH	0.5 FT.
DUINNI OFF MITHIN DEL III		

NOTES:

- 1. All cross—sections facing the downstream direction
- 2. Cross—section stationing represents approximate field locations.
- 3. Elevations based on relative benchmark; left pin elevation=100.0 ft.

Survey Date	SEPT. 2010
Survey Weather	Sunny
Field Team	Schmid, Geratz
Location	XS5

Survey Date	SEPT. 2010
Survey Weather	Sunny
Field Team	Schmid, Geratz
Location	XS5

XS5 LEFT BANK LOOKING RIGHT BANK

XS5 LOOKING DOWNSTREAM

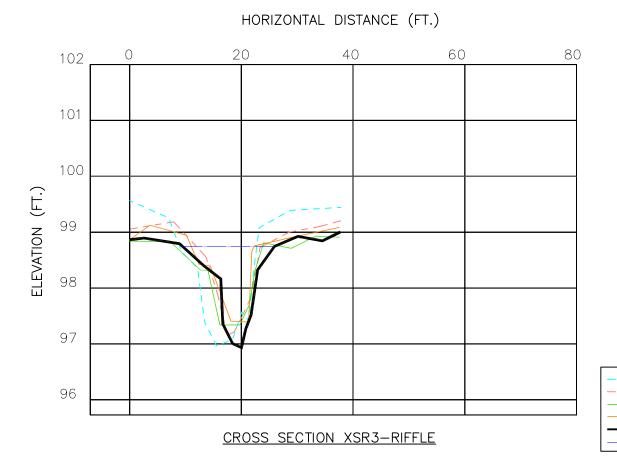
an Atkins company

REVISIONS

McDONALDS POND RESTORATION SITE

EEP Project No. D04020-2

RICHMOND COUNTY, NORTH CAROLINA


CROSS SECTION XS5-POOL

Dsn.	Ву:		Dwn. By:	
		JWC		RLG
Ckd.	Ву:		Date:	
		MCG	ОСТ	2010
Contac				

NO SCALE Project No.:

100004932

SHEET

	SURVEY DATA				
STATION	ELEVATION	FEATURE			
0	100.47	blpin			
2.55	100.5				
8.93	100.4				
13.46	99.99				
16.32	99.77				
16.68	98.96				
18.45	98.61				
20.01	98.54				
20.78	98.87				
21.75	99.13				
22.92	99.93				
25.91	100.35				
30.12	100.53	-			
34.53	100.45				
37.73	100.61	brpin			
SUMMARY DATA					
DANIZELLI ODOCC	10.1 CO FT				
BANKFULL CROSS SECTIONAL AREA		12.1 SQ. FT.			
BANKFULL WIDTH		16.4 FT.			
DANKELLI MEAN DEDTI:		0.7.5			
BANKFULL MEAN DEPTH		0.7 FT.			
BANKFULL MAX DEPTH		1.8 FT.			
WIDTH-DE	PTH RATIO	23.4			
ENTRENCHMENT RATIO		24.4			
ENTITE TO THE TO THE		27.7			
CLASSIFICATION		C5			
000	ICATION	00			

XSR3 LEFT BANK LOOKING RIGHT BANK

GRADE ELEVATION (2006)
GRADE ELEVATION (2007)
GRADE ELEVATION (2008)
GRADE ELEVATION (2009)

GRADE ELEVATION (2010)

BANKFULL ELEVATION

XSR3 LOOKING DOWNSTREAM

NOTES:

- All cross—sections facing the downstream direction
- 2. Cross—section stationing represents approximate field locations.
- 3. Elevations based on relative benchmark; left pin elevation=100.0 ft.

Survey Date	SEPT. 2010
Survey Weather	Sunny
Field Team	Schmid, Geratz
Location	XSR3

an Atkins company

1	
1	
1	
4	
ł	
1	
1	·

REVISIONS

lient:

Droing

McDONALDS POND RESTORATION SITE

EEP Project No. D04020-2

RICHMOND COUNTY, NORTH CAROLINA

Title

CROSS SECTION XSR3-RIFFLE

Dsn.	Ву:		Dwn. By:	
		JWC		RLG
Ckd.	Ву:		Date:	
		MCG	OCT 2	2010
Scale	::			
			NO S	CALE

Project No.:

100004932

SHEET

 GRADE ELEVATION (2006) GRADE ELEVATION (2007) GRADE ELEVATION (2008) GRADE ELEVATION (2009)	_
 GRADE ELEVATION (2010) BANKFULL ELEVATION	

XS6 LEFT BANK LOOKING RIGHT BANK

XS6 LOOKING DOWNSTREAM

	SURVEY DATA	
STATION	ELEVATION	FEATURE
0	99.32	blpin
3.16	99.33	
7.46	99.37	
13.89	99.21	
17.68	98.76	
18.45	97.89	
19.29	97.55	
20.07	97.37	
21.17	98.42	
21.16	97.63	
22.01	98.97	
24.42	99.45	
29.17	99.4	
36.05	99.34	
41.83	99.34	
48.74	99.52	
55.71	99.38	
60.88	99.22	
61.3	98.31	
61.91	98.23	
62.93	97.89	
63.93	98.07	
64.17	98.57	
64.68	99.58	
66.58	99.66	
76.95	99.37	
83.9	99.35	brpin

an Atkins company
REVISIONS

	SUMMARY DATA	
BANKFULL CROSS	SECTIONAL AREA	13.1 SQ. FT.
BANKFUL	L WIDTH	25.1 FT.
BANKFULL M	IEAN DEPTH	0.5 FT.
BANKFULL N	MAX DEPTH	2.0 FT.
WIDTH-DEF	PTH RATIO	N/A
ENTRENCHM	ENT RATIO	N/A
	ICATION	NI /A

NOTES:

- All cross—sections facing the downstream direction
- 2. Cross—section stationing represents approximate field locations.
- 3. Elevations based on relative benchmark; left pin elevation=100.0 ft.

Survey Date	SEPT. 2010
Survey Weather	Sunny
Field Team	Schmid, Geratz
Location	XS6

Project:

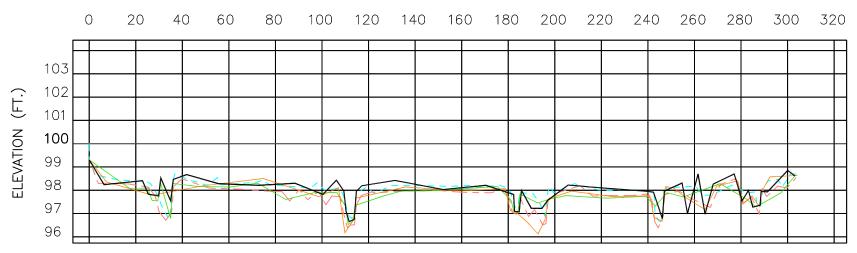
McDONALDS POND RESTORATION SITE

EEP Project No. D04020-2

RICHMOND COUNTY, NORTH CAROLINA

Title:

CROSS SECTION XS6-POOL


Dsn. By:		Dwn. By:
	JWC	RLG
Ckd. By:		Date:
	MCG	OCT 2010
Scale:		
		NO SCALE

Project No.:

100004932

SHEET

HORIZONTAL DISTANCE (FT.)

CROSS SECTION XS7-BRAIDED CHANNELS

 GRADE	ELEVATION	(2006)
	ELEVATION	
	ELEVATION	
 GRADE	ELEVATION	(2009)
GRADE	ELEVATION	(2010)
 BANKFU	JLL ELEVATI	ON

XS7 LEFT BANK LOOKING RIGHT BANK

XS7 LOOKING DOWNSTREAM

		SURVE	/ DATA		
STATION	ELEVATION	FEATURE	STATION	ELEVATION	FEATURE
0.25	99.74	blpi	185.02	97.51	
6.63	98.68		185.93	98.43	
23.13	98.85		190.2	97.66	
25.66	98.27		194.79	97.66	
30.13	98.19		197.18	98	
30.99	98.97		205.95	98.66	
35.26	97.98		221.56	98.53	
36.36	98.9		239.27	98.4	
42.08	99.11		242.66	98.36	eo
55.87	98.72		246.48	97.22	
73.42	98.65		247.31	98.4	
88.6	98.74		254.95	98.75	
100.66	98.26		257.27	97.44	
106.44	98.87		261.79	99.14	
109.65	98.41		264.84	97.41	
110.63	97.53		268.33	98.7	
111.95	97.09		277.33	99.14	
114.15 115.01	97.19 98.39		280.79 283.42	97.99 98.43	
117.35	98.63		285.36	97.71	
131.55	98.86		288.46	97.71	
152.38	98.47		288.86	98.39	
170.59	98.65		291.63	98.37	
182.54	98.26		300.31	99.29	
182.96	97.53		303.51	99.05	brpi
102.50	37.33		303.31	33.03	ырі
		SUMMAR	Y DATA		
BA	NKFULL CROSS	SECTIONAL AR	EA	N/	Ά*
	BANKFUL				Ά*
	BANKFULL N	MEAN DEPTH		N/	A *
	BANKFULL	MAX DEPTH		N/	Α*
	WIDTH-DE	PTH RATIO		N/	Α*
	ENTRENCH	MENT RATIO		N/	Ά*
				,	

* See document text for details

NOTES:

- 1. All cross—sections facing the downstream direction
- 2. Cross—section stationing represents approximate field locations.
- 3. Elevations based on relative benchmark; left pin elevation=100.0 ft.

Survey Date	SEPT. 2010
Survey Weather	Sunny
Field Team	Schmid, Geratz
Location	XS7

an Atkins company

REVISIONS

McDONALDS POND RESTORATION SITE

EEP Project No. D04020-2

RICHMOND COUNTY, NORTH CAROLINA

CROSS SECTION XS7-BRAIDED CHANNELS

Dsn. By:		Dwn. By:
	JWC	RLG
Ckd. By:		Date:
	MCG	OCT 2010
Scale:		
		NO SCALE

Project No.:

100004932

SHEET

HORIZONTAL DISTANCE (FT.)

CROSS SECTION XS8-BRAIDED CHANNELS

GRADE ELEVATION (2009) GRADE ELEVATION (2010) BANKFULL FLEVATION
--

XS8 LEFT BANK LOOKING RIGHT BANK

XS8 LOOKING DOWNSTREAM

	SURVEY DATA									
STATION	ELEVATION	FEATURE	STATION	ELEVATION	FEATURE					
0.18	100.17	blpi	137.89	100.28						
9.02	100.09		140.08	99.39						
15.13	99.16		143.33	99.18						
17.17	99.5		145.73	99.15						
18.41	100.69		148.05	99.82	eo					
20.2	99.47		149.18	100.04						
24.89	99.84		151.83	100.77						
25.28	100.41		161.08	100.33						
29.77	100.17		164.11	99.75						
31.7	99.59		164.95	99.3						
39.81	99.23		166.55	99.56						
41.67	99.94		167.01	99.97						
42.9	100.13		171.25	100.34						
58.34	100.14		179.65	100.23						
71.76	99.9		184.43	99.67						
72.8	99.01		185.11	98.95						
79.99	99.23		187.08	99.15						
85.88	99.36		189	100.45						
86.53	100.02		195.41	100.41						
88.96	100.19		196.18	99.65						
96.82	100.65		200.27	99.89						
100.6	99.67		210.62	100.65						
102.88	100.25		210.81	99.66						
113.51	100.34		212.21	99.85						
127.74	100.11		213.81	100.69	brpi					
				1						

CI	11.41	4 4	\neg	\Box	т
- 51	JMN	ЛΑ	RY	DP	١I.

SUMMART DATA	
BANKFULL CROSS SECTIONAL AREA	N/A*
BANKFULL WIDTH	N/A*
	· ·
BANKFULL MEAN DEPTH	N/A*
	· ·
BANKFULL MAX DEPTH	N/A*
WIDTH-DEPTH RATIO	N/A*
ENTRENCHMENT RATIO	N/A*
	•
CLASSIFICATION	DA5

^{*} See document text for details

NOTES:

- 1. All cross—sections facing the downstream direction
- 2. Cross—section stationing represents approximate field locations.
- 3. Elevations based on relative benchmark; left pin elevation=100.0 ft.

Survey Date	SEPT. 2010		
Survey Weather	Sunny		
Field Team	Schmid, Geratz		
Location	XS8		

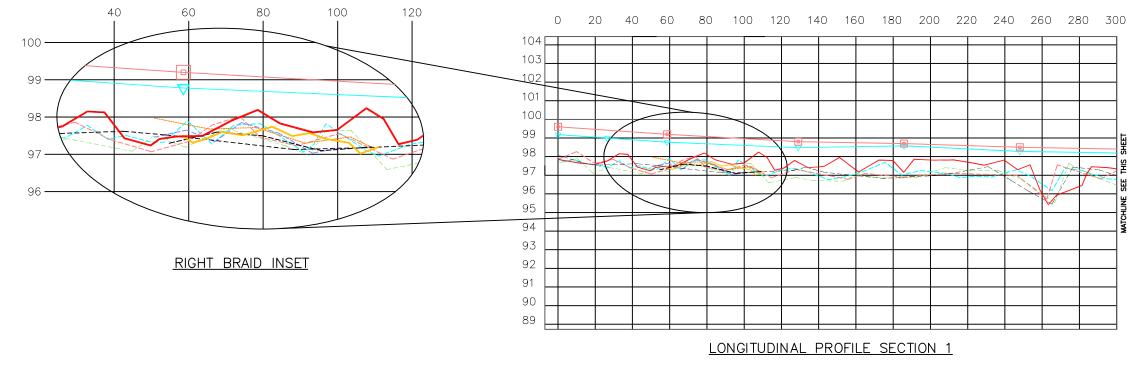
an Atkins company

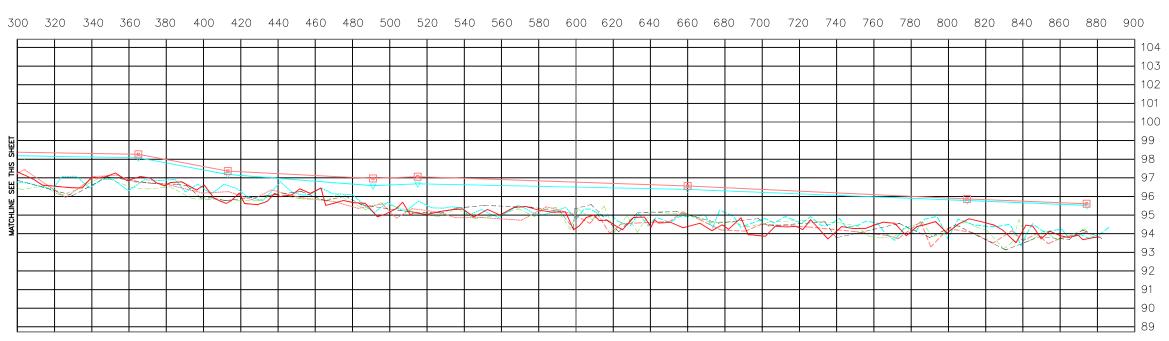
REVISIONS					

McDONALDS POND RESTORATION SITE

EEP Project No. D04020-2

RICHMOND COUNTY, NORTH CAROLINA


CROSS SECTION XS8-BRAIDED CHANNELS


Dsn. By:		Dwn. By:
	JWC	RLG
Ckd. By:		Date:
	MCG	OCT 2010
Scale:		
		NO SCALE

Project No.:

100004932

SHEET

LONGITUDINAL PROFILE SECTION 2

GRADE ELEVATION THALWEG (2006) ----- GRADE ELEVATION THALWEG (2007) ----- GRADE ELEVATION THALWEG (2008) ----- GRADE ELEVATION THALWEG (2009) GRADE ELEVATION THALWEG (2010) ---- RIGHT BRAID THALWEG (2007) ---- RIGHT BRAID THALWEG (2008) ----- RIGHT BRAID THALWEG (2009) - RIGHT BRAID THALWEG (2010) → ✓ WATER SURFACE ELEVATION BANKFULL

BANKFULL SLOPE: 0.0046 WATER SURFACE SLOPE: 0.0042

REVISIONS

McDONALDS POND RESTORATION SITE

EEP Project No. D04020-2

RICHMOND COUNTY, NORTH CAROLINA

LONGITUDINAL PROFILE

Dsn. By:		Dwn. By:
	JWC	RLG
Ckd. By:		Date:
	MCG	OCT 2010
Scale:		
		NO SCALE

Project No.:

100004932

SHEET

	McE	onald	s Pond	Restorat	ion Sit	e: Lon	gitudir	nal Profil	e Data	(2010)	
Station	TWG	WS	BKF	Station	TWG	WS	BKF	Station	TWG	ws	BKF
0.0	98.0	99.0	99.6	358.1	97.0			620.0	94.5		
11.8	97.8	33.0	33.0	365.2	97.2	97.9	98.3	623.4	94.4		
19.6	97.7			370.4	97.1	0.110	0.010	629.3	95.0		
26.2	97.9			373.9	96.9			635.1	95.0		
32.7	98.3			378.2	96.7			638.7	94.5		
37.4	98.3			381.2	96.9			640.4	94.9		
42.7	97.6			387.3	96.9			642.7	94.7		
49.8	97.4			392.7	96.6			649.1	94.8		
52.1	97.6			395.3	96.5			655.8	94.5		
58.6	97.6	98.6	99.2	399.5	96.8			660.0	94.6	96.2	96.6
56.4	97.6	30.0	33.2	404.7	96.1			664.8	94.7	30.2	30.0
63.6	97.6			408.3	95.9			671.3	94.3		
71.4	98.0			411.3	95.8			676.7	94.6		
78.4	98.3			413.0	95.8	97.0	97.4	680.2	94.4		
84.5	98.0			413.7	95.9	37.0	37.4	686.7	95.0		
93.3	97.7			413.7	96.3			690.5	94.1		
99.8	97.8			421.1	95.8			699.8	94.1		
107.6	98.4			421.1	95.7			705.1	94.6		
112.2	98.1			433.1	95.9			711.3	94.5		
116.2	97.4			437.1	96.3			711.3	94.5		
121.3	97.4			440.0	96.1			719.9	94.4		
121.3	97.5			446.6	96.2			719.9	94.4		
129.0	97.7	98.3	98.8	450.6				733.2			
		98.3	98.8		96.6				93.9		
134.1	97.6			456.3	96.3			740.6	94.5		
142.7	97.6			462.0	96.6			747.1	94.4		
150.9	98.1			464.4	95.7			753.6	94.4		
161.2 172.0	97.3 98.0			469.3 473.7	95.8 95.9			757.0 762.9	94.6		
									94.8		
179.6	97.9	00.4	00.7	479.9	95.8			769.0	94.7 94.0		
185.4	97.3	98.4	98.7	485.6	95.8	04.4	07.0	775.3			
190.9	98.0			491.0	95.4	94.4	97.0	780.9	94.5		
202.0	98.0			492.1	95.1			785.6	94.6		
212.1	98.0			496.7	95.2			790.9	94.8		
221.2	97.8			502.4	95.5			797.1	94.2		
228.5	97.7			505.6	95.8			803.1	94.7	05.6	05.0
239.2	98.0			509.8	95.1			810.0	94.8	95.6	95.9
246.5	97.4	00.4	00.5	511.3	95.3	06.5	07.4	808.8	95.0		
248.0	97.5	98.1	98.5	515.0		96.5	97.1	815.3	94.8		
253.1	97.7			518.8	95.2			822.2	94.6		
258.2	96.4			525.8	95.3			826.8	94.3		
262.6	95.6			532.7	95.4			834.1	93.7		
267.0	96.1			537.8	95.5			839.3	94.6		
280.7	96.6			543.8	95.0			843.0	94.6		
283.3	97.2			551.1	95.4			847.4	93.9		
285.6	97.6			557.7	95.2			851.9	94.3		
293.8	97.6			565.2	95.6			857.8	94.0		
298.3	97.5			571.6	95.6			862.2	93.9		
303.2	97.3			579.1	95.4			867.3	94.1		
307.9	97.1			586.1	95.3			869.8	93.8		
312.8	96.8			592.9	95.3			874.8	93.9		
328.7	96.6			597.2	94.4			880.1	93.9		
334.1	96.6			600.3	94.6						
339.2	97.2			603.9	95.0			Units=Fee			
342.6	97.1			607.9	95.2			TWG=Tha			
346.1	97.2			610.9	94.9			WS=Wate		ce	
351.8	97.4			615.1	94.9			BKF=Bank	cfull .		

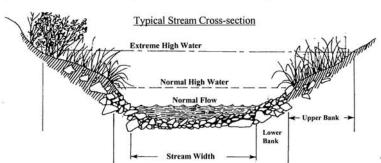
APPENDIX C: A	QUATIC COMMU	J NITY DATA	

CDECTEC	T. X/	EEC	Reach 1	Decel 2	David 2	Reach 4
SPECIES ANNELIDA	T.V.	F.F.G.	(Reference)	Reach 2	Reach 3	(Reference)
		CG				
Oligochaeta Tubificida		CG				
Naididae	6.1	CG	2			
Nais sp.	8.9	CG	2			2
Pristina leidyi	9.6	CG	1			2
Tubificidae w.o.h.c.	9.5	CG	1			
Lumbriculida	9.5	CG				
Lumbriculidae	7	CG	1			
ARTHROPODA	/	CG	1			
Arachnoidea						
Acariformes					1	
					1	
Cladacara						
Chyderidae		1			1	
Chydoridae					1	
Isopoda		CII				
Asellidae	0.1	SH			1	
Caecidotea sp.	9.1	CG			1	
Decapoda	7.5		1			1
Cambaridae	7.5		1			1
Insecta						
Ephemeroptera	(1	CC		1	1	
Baetidae	6.1	CG		1	1	
Acerpenna pygmaea	3.7	CC		1	1	
Plauditus sp.	4.5	CG	2	2	1	
Pseudocloeon sp.	2.5	CG	2	2	0	0
Maccaffertium (Stenonema) sp.	3.5	SC	7	14	8	9
Paraleptophlebia sp.	0.9	CG	2	2	3	1
Odonata		- D	12	(-	20
Boyeria vinosa	6	P	13	6	5	20
Calopteryx sp.	7.8	P	5	2	18	7
Argia sp.	8.2	P	7	2		4
Condulegaster sp.	5.7	P	2			4
Gomphidae	5	P	1	1	4	
Dromogomphus spinosus	5.9	P	9	1	2	15
Gomphus sp.	5.8	P	9	2	2	15
Hagenius brevistylus	9.2	P	2	3		
Progomphus obscurus	8.2	P	3	1		
Libellulidae	6.7	P	1		1	
Macromia sp.	6.2	P			1	
Macromia illinoensis			2	10	1	2
Neurocordulia sp.	5		2	10	14	3
Neurocordulia virginiensis	5	-				1
Plecoptera	0.2	CIT				
Leuctridae	0.2	SH	10	17	26	27
Leuctra sp.	0.7	SH	12	16	26	27

SPECIES	T.V.	F.F.G.	Reach 1 (Reference)	Reach 2	Reach 3	Reach 4 (Reference)
Acroneuria sp.	1.5	P	7	Reach 2	Reach 5	2
Perlesta sp.	4.7	P	,	1		1
Perlinella sp.	0.6	P	1	-		-
Hemiptera	0.0	-	-			
Nepidae		_				
Ranatra sp.	7.8	P		1		
Veliidae	6	P				
Rhagovelia obesa	6	P	1			1
Megaloptera						-
Corydalidae	6.5	P				
Nigronia serricornis	5.3	P	6	4	1	2
Sialidae		P				
Sialis sp.	7.2	P				1
Trichoptera	1,12					
Hydropsychidae	4	FC				
Cheumatopsyche sp.	6.2	FC	2	1		
Diplectrona modesta	2.2	FC	10	1		23
Hydropsyche sp.	4.3	FC	6	14	48	1
Hydroptilidae	4	PI	, ,			-
Oxyethira sp.	2.2	PI			1	
Leptoceridae	2.7	CG			_	
Oecetis sp.	4.7	P			4	
Odontoceridae		SC				
Psilotreta sp.	0	SC		3	3	1
Philopotamidae	Ů	FC				-
Chimarra sp.	2.8	FC	6		1	
Coleoptera		10			_	
Elmidae	6	CG				
Ancyronyx variegata	6.5	SC	3	5	1	
Promoresia elegans	2.4	SC	1	1	1	
Stenelmis sp.	5.1	SC	8	-	1	
Staphylinidae	8	P	1		_	
Diptera						
Chironomidae						
Ablabesmyia mallochi	7.2	P			1	
Ablabesmyia rhamphe gp.	7.2	P	1			
Apsectrotanypus johnsoni	0.1		2		2	3
Conchapelopia sp.	4.5	P	8	3	15	4
Corynoneura sp.	6	CG	2			
Cricotopus bicinctus				1		
Cryptochironomus sp.	6.4	P			1	
Microtendipes pedellus gp.	5.5	CG		1	1	
Parachaetocladius sp.	0	CG				1
Paramerina sp.	4.3	P	1			
Parametriocnemus sp.	3.7	CG	8			
Polypedilum flavum (convictum)	5.7	SH	1	2	6	

Polypedilum illinoense	5.7	SH			1	
SPECIES	T.V.	F.F.G.	Reach 1 (Reference)	Reach 2	Reach 3	Reach 4 (Reference)
Psectrocladius sp.	3.6	SH			7	
Rheocricotopus tuberculatus	7.3	CG			2	
Rheosmittia arcuota	7					1
Rheotanytarsus exiguus gp.	5.9		1	1	8	
Tanytarsus sp.	6.8	FC			1	
Thienemanniella sp.	5.9		1			
Thienemanniella xena	5.9	CG				1
Tvetenia paucunca	3.7	CG			1	1
Simuliidae	3.5	FC				
Simulium sp.	4	FC	2		4	
Tipulidae	4.9	SH				
Hexatoma sp.	4.3	P	1			
Tipula sp.	7.3	SH	1			1
TOTAL NO. OF ORGANISMS			153	100	199	134
TOTAL NO. OF TAXA			42	27	38	26
ЕРТ			10	11	10	8
BIOTIC INDEX			4.54	4.03	4.51	4.07

ADDENING D. NCDWO HADITAT ACCECCMENT FORM COACTAL DI AIN
APPENDIX D: NCDWQ HABITAT ASSESSMENT FORM - COASTAL PLAIN


3/06 Revision 7

Habitat Assessment Field Data Sheet

	Habit	Coastal Plain Stream			
			process of the same of the sam	TAL SCORE_	
upstream direction starting stream conditions. To perf description which best fits	it, DWQ server is to survey a minim g above the bridge pool and orm a proper habitat evalua the observed habitats and th e. A final habitat score is d	the road right-of-way. tion the observer needs nen circle the score. If	The segment which is to get into the stream. the observed habitat fa	assessed should re To complete the f lls in between two	epresent average form, select the
Stream	Location/road:	(Road N	ame)Co	ounty	
Date	CC#	Basin	Subba	sin	
Observer(s) Ty	pe of Study: ☐ Fish ☐ Be	enthos Basinwide	□Special Study (Descr	ribe)	
LatitudeLo	ngitudeEc	oregion: □ CA □ S	WP □ Sandhills □ Cl	В	
Water Quality: Tempera	ture°C DO	_mg/l Conductivity	(corr.)µS/cm	рН	
	n: Visible land use refers the watershed in watersh		t you can see from sa	mpling location.	Check off what
Visible Land Use:%Fallow Fields	%Forest % Commercial	%Residential	%Active Pasture %Other - Describe:	% Active Cre	ops
Watershed land use □ Fo	rest	n Animal operation	s upstream		
□ Widtl	Channel (at top on variable Braided chanst part of channel to top of b	nnel □Large river >2	m Depth: (m) Avg_ 25m wide	Max	
A. Water reaches B. Water fills >75 C. Water fills 25- D. Root mats out	□Normal □Low under abnormal or low flow base of both banks, minima % of available channel, or 75% of available channel, n of water er in channel, mostly presen	el channel substrate exp <25% of channel substr nany logs/snags expose	ate is exposedd		
	ghtly Turbid Turbid [nds Restoration Project??		Colored (from dyes)	Green tinge	
□Channelized ditch □Deeply incised-steep, str □Recent overbank deposit □Excessive periphyton gre	aight banks Both banks SBar develop with Heavy filan	undercut at bend oment nentous algae growth	□Channel filled in v □Sewage smell	vith sediment	
Manmade Stabilization: ☐ Weather Conditions:	N □Y: □Rip-rap, cemer P	nt, gabions 🗆 Sediment Photos: 🗆N 🖂 Y 🗀	t/grade-control structur Digital □35mm	re □Berm/levee	
Remarks:TYPICAL STREAM CR	OSS SECTION DIAGRA	M ON BACK	5.46		

I. Channel Modification					C
					Score
A. Natural channel-minimal dredging					15
B. Some channelization near bridge, or historic (>				pear	10
 C. Extensive channelization, straight as far as can 					5
D. Banks shored with hard structure, >80% of reach	ch disrupte	d, instream habitat g	gone		0
Remarks					Subtotal
II. Instream Habitat: Consider the percentage of the reac reach is snags, and 1 type is present, circle the score of 16. have begun to decay (not piles of leaves in pool areas). Ma	Definition:	leafpacks consist of	of older leaves	r fish cov that are p	er. If >50% of the acked together and
SticksSnags/logsUndercut banks or roo	ot mats	Macrophytes _	Leafpack	s	
AMOUNT OF REACH FAVO	DARIFE	OR COLONIZAT	ON OR COV	/FD	
AMOUNT OF REACH FAVO	>50%	30-50%	10-30%	<10%	
	Score	Score	Score	Score	
A a= 5 t	20	15	10	5	
4 or 5 types present			8	4	
3 types present	18	13			
2 types present	17	12	7	3	
1 type present	16	- 11	6	2	
No substrate for benthos coloniz	zation and i	no fish cover		0	Subtotal
☐ No woody vegetation in riparian zone Remarks_					Subtotai
III. Bottom Substrate (silt, clay, sand, detritus, gravel) lo	ok at entire	reach for substrate	scoring.		
A. Substrate types mixed					Score
1. gravel dominant					15
2. sand dominant					13
3. detritus dominant					7
4. silt/clay/muck dominant					4
B. Substrate homogeneous					
1. nearly all gravel					12
2. nearly all sand					7
3. nearly all detritus					4
4. nearly all silt/clay/muck					1
n					Subtata I
Remarks		VI		2	Subtotal
IV. Pool Variety Pools are areas of deeper than average	maximum	depths with little or	no surface tu	rbulence.	Water velocities
associated with pools are always slow.					
A. Pools present					Score
 Pools Frequent (>30% of 100m length surveyed 	d)				
a. variety of pool sizes					10
b. pools about the same size (indicates po	ools filling	in)			8
2. Pools Infrequent (<30% of the 100m length sur	veyed)				
a. variety of pool sizes					6
b. pools about the same size					4
B. Pools absent					
Deep water/run habitat present					4
Deep water/run habitat absent					0
2. Deep water fair national account manner					Subtotal
27 2				-	Page Total
Remarks					

V. Bank Stability and Vegetation	Score	Score
A. Banks stable or no banks, just flood plain	10	10
little or no evidence of erosion or bank failure, little potential for erosion B. Erosion areas present	10	10
diverse trees, shrubs, grass; plants healthy with good root systems	9	9
diverse trees, shrubs, grass, plants healthy with good root systems few trees or small trees and shrubs; vegetation appears generally healthy	7	7
sparse vegetation; plant types and conditions suggest poorer soil binding	4	4
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow	2	2
5. little or no bank vegetation, mass erosion and bank failure evident	0	2
5. Indie of no bank vegetation, mass croston and bank failure evident	U	
	Т	otal
Remarks		
VI. Light Penetration (Canopy is defined as tree or vegetative cover directly above the stream's surfasunlight when the sun is directly overhead).	ace. Canop	y would block
		Score
A. Stream with good canopy with some breaks for light penetration		10
B. Stream with full canopy - breaks for light penetration absent		8
C. Stream with partial canopy - sunlight and shading are essentially equal		7
D. Stream with minimal canopy - full sun in all but a few areas		2
E. No canopy and no shading.		0
		Subtotal
Remarks		
VII. Riparian Vegetative Zone Width Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks of the riparian zone (banks); places where pollutants can directly enter the stream.	refer to the	near-stream po
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks	refer to the	near-stream po
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks of the riparian zone (banks); places where pollutants can directly enter the stream.		•
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks of the riparian zone (banks); places where pollutants can directly enter the stream. A. Riparian zone intact (no breaks)	Lft. Bank	Rt. Bank
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks of the riparian zone (banks); places where pollutants can directly enter the stream. A. Riparian zone intact (no breaks) 1. zone width > 18 meters	Lft. Bank	Rt. Bank
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks of the riparian zone (banks); places where pollutants can directly enter the stream. A. Riparian zone intact (no breaks)	Lft. Bank Score	Rt. Bank Score
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks of the riparian zone (banks); places where pollutants can directly enter the stream. A. Riparian zone intact (no breaks) 1. zone width > 18 meters	Lft. Bank Score	Rt. Bank Score
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks of the riparian zone (banks); places where pollutants can directly enter the stream. A. Riparian zone intact (no breaks) 1. zone width > 18 meters	Lft. Bank Score 5 4	Rt. Bank Score
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks of the riparian zone (banks); places where pollutants can directly enter the stream. A. Riparian zone intact (no breaks) 1. zone width > 18 meters	Lft. Bank Score 5 4 3	Rt. Bank Score
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks of the riparian zone (banks); places where pollutants can directly enter the stream. A. Riparian zone intact (no breaks) 1. zone width > 18 meters	Lft. Bank Score 5 4 3	Rt. Bank Score
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks of the riparian zone (banks); places where pollutants can directly enter the stream. A. Riparian zone intact (no breaks) 1. zone width > 18 meters	Lft. Bank Score 5 4 3	Rt. Bank Score
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks of the riparian zone (banks); places where pollutants can directly enter the stream. A. Riparian zone intact (no breaks) 1. zone width > 18 meters	Lft. Bank Score 5 4 3 2	Rt. Bank Score 5 4 3 2
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks of the riparian zone (banks); places where pollutants can directly enter the stream. A. Riparian zone intact (no breaks) 1. zone width > 18 meters	Lft. Bank Score 5 4 3 2	Rt. Bank Score 5 4 3 2
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks of the riparian zone (banks); places where pollutants can directly enter the stream. A. Riparian zone intact (no breaks) 1. zone width > 18 meters	Lft. Bank Score 5 4 3 2	Rt. Bank Score 5 4 3 2
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks of the riparian zone (banks); places where pollutants can directly enter the stream. A. Riparian zone intact (no breaks) 1. zone width > 18 meters	Lft. Bank Score 5 4 3 2	Rt. Bank Score 5 4 3 2
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks of the riparian zone (banks); places where pollutants can directly enter the stream. A. Riparian zone intact (no breaks) 1. zone width > 18 meters	Lft. Bank Score 5 4 3 2	Rt. Bank Score 5 4 3 2
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks of the riparian zone (banks); places where pollutants can directly enter the stream. A. Riparian zone intact (no breaks) 1. zone width > 18 meters	Lft. Bank Score 5 4 3 2	Rt. Bank Score 5 4 3 2
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks of the riparian zone (banks); places where pollutants can directly enter the stream. A. Riparian zone intact (no breaks) 1. zone width > 18 meters	Lft. Bank Score 5 4 3 2 4 3 2 1	Rt. Bank Score 5 4 3 2 4 3 2 1
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks of the riparian zone (banks); places where pollutants can directly enter the stream. A. Riparian zone intact (no breaks) 1. zone width > 18 meters	Lft. Bank Score 5 4 3 2 4 3 2 1 3 2	Rt. Bank Score 5 4 3 2 4 3 2 1
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks of the riparian zone (banks); places where pollutants can directly enter the stream. A. Riparian zone intact (no breaks) 1. zone width > 18 meters	Lft. Bank Score 5 4 3 2 4 3 2 1 3 2 1 0	Rt. Bank Score 5 4 3 2 4 3 2 1
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. Breaks of the riparian zone (banks); places where pollutants can directly enter the stream. A. Riparian zone intact (no breaks) 1. zone width > 18 meters	Lft. Bank Score 5 4 3 2 4 3 2 1 3 7 1 0	Rt. Bank Score 5 4 3 2 4 3 2 1 3 2 1 0 ordal
Definition: A break in the riparian zone is any area which allows sediment to enter the stream. A. Riparian zone (banks); places where pollutants can directly enter the stream. A. Riparian zone width > 18 meters. 2. zone width 12-18 meters. 3. zone width 6-12 meters. 4. zone width < 6 meters. B. Riparian zone not intact (breaks) 1. breaks rare a. zone width > 18 meters. b. zone width > 18 meters. c. zone width < 6 meters. d. zone width < 6 meters. c. zone width < 12-18 meters. c. zone width < 12-18 meters. c. zone width < 12-18 meters. c. zone width < 6 meters. d. zone width < 6 meters. b. zone width < 6 meters. d. zone width < 6 meters. c. zone width < 6 meters. d. zone width < 6 meters. d. zone width < 6 meters.	Lft. Bank Score 5 4 3 2 4 3 2 1 3 7 1 0	Rt. Bank Score 5 4 3 2 4 3 2 1 3 2 1 0

This side is 45° bank angle.

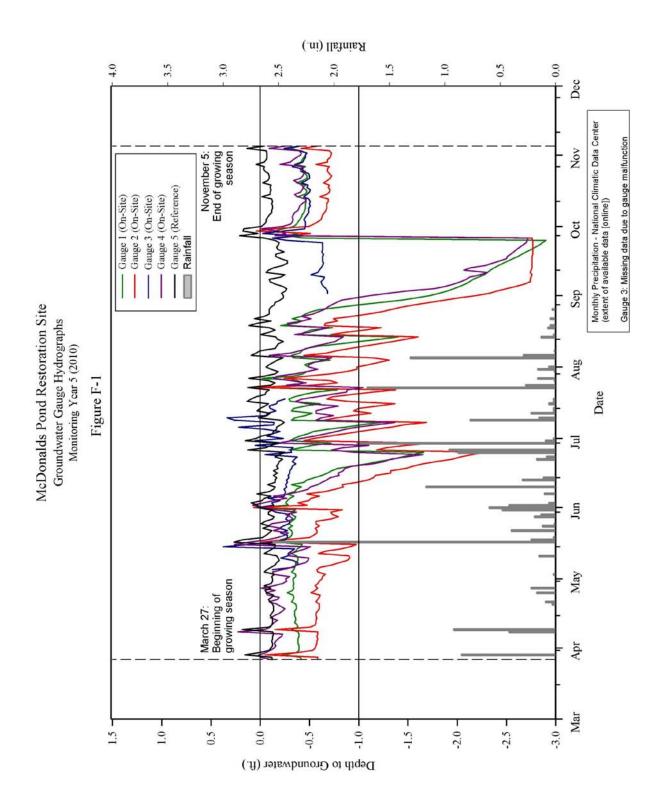
APPENDIX E: VEGETATION MONITORING PLOT PHOTOS

Vegetation Plot 2

Vegetation Plot 3

Vegetation Plot 4

Vegetation Plot 7


Vegetation Plot 10

McDonalds Pond Restoration Site Vegetation Monitoring Summary Data

			- Year 1 Mo			1		
Species	Plot 1	Plot 2	Plot 3	Plot 4	Plot 5	Plot 6	Plot 7	Plot 8
Chamaecyparis thyoides	4	4	3	2	2	7	7	4
Liriodendron tulipifera	2	0	1	0	0	2	0	1
Magnolia virginiana	0	6	3	0	0	1	0	0
Nyssa biflora	4	6	3	6	0	2	6	2
Persea borbonia	0	0	0	0	0	0	1	0
Pinus taeda	1	2	0	3	0	0	0	6
Pinus serotina	3	3	4	1	9	2	3	7
TOTAL	14	21	14	12	11	14	17	20
DENSITY (trees/acre)	567	850	567	486	445	567	688	809
(* * * * * * * * * * * * * * * * * *		2007	- Year 2 Mo	nitoring				
Species	Plot 1	Plot 2	Plot 3	Plot 4	Plot 5	Plot 6	Plot 7	Plot
Chamaecyparis thyoides	4	4	2	2	2	7	7	3
Liriodendron tulipifera	0	0	1	0	0	2	0	0
Magnolia virginiana	0	6	3	0	0	1	1	0
Nyssa biflora	4	5	3	6	0	2	6	2
Persea borbonia	0	0	0	0	0	0	1	0
Pinus taeda	1	2	0	3	0	0	0	6
Pinus serotina	4	3	4	1	8	2	3	5
TOTAL	13	20	13	12	10	14	18	16
		809	526	486	405		728	
DENSITY (trees/acre)	526		- Year 3 Mo		405	567	128	647
Species	Plot 1	Plot 2	Plot 3	Plot 4	Plot 5	Plot 6	Plot 7	Plot
Chamaecyparis thyoides	3	5	3	2		6	7	2
7.7	-				2		-	
Liriodendron tulipifera	0	0	1	0	0	0	0	0
Magnolia virginiana	0	1	3	0	0	1	0	0
Nyssa biflora	4	7	4	6	0	2	5	2
Persea borbonia	0	0	0	0	0	0	0	0
Pinus taeda	1	0	0	0	1	0	0	2
Pinus serotina	6	3	3	7	7	5	1	4
TOTAL	14	16	14	15	10	14	13	10
DENSITY (trees/acre)	567	647	567	607	405	567	526	405
	•		- Year 4 Mo		T.	ı	T	
Species	Plot 2	Plot 3	Plot 4	Plot 5	Plot 6	Plot 7	Plot 9*	Plot 1
Chamaecyparis thyoides	4	3	2	2	6	6	3	3
Liriodendron tulipifera	0	1	0	0	0	0	3	0
Magnolia virginiana	1	3	0	0	1	0	3	3
Nyssa biflora	4	3	6	0	2	5	7	11
Persea borbonia	0	0	0	0	0	0	0	0
Pinus taeda	0	0	0	1	0	0	0	0
Pinus serotina	3	3	7	7	5	1	0	0
TOTAL	12	13	15	10	14	12	16	17
DENSITY (trees/acre)	486	526	607	405	567	486	647	688
	•	2010	- Year 5 Mo	nitoring				<u> </u>
Species	Plot 2	Plot 3	Plot 4	Plot 5	Plot 6	Plot 7	Plot 9*	Plot 1
Chamaecyparis thyoides	2	3	2	2	6	5	2	3
Liriodendron tulipifera	0	1	0	0	0	0	3	0
Magnolia virginiana	1	3	0	0	0	0	3	3
Nyssa biflora	4	3	6	0	2	5	7	10
, v								
Persea borbonia	0	0	0	0	0	0	0	0
Pinus taeda	0	0	0	0	0	0	0	0
Pinus serotina	1	3	6	6	4	1	0	0
TOTAL	8	13	14	8	12	11	15	16
DENSITY (trees/acre)						445		

^{*}Plots 1 and 8 were replaced with new plots 9 and 10 following remedial work at the Site

APPENDIX F: GROUNDWATER GAUGE HYDROGRAPH

